
A Brief Introduction to CVS

John Baldwin

A Brief Introduction to CVS
by John Baldwin

$Revision: 1.5 $ Edition
Published $Date: 1999/10/16 00:01:02 $

This document is intended to serve as a brief overview of CVS for the members of the OddBall compiler
programming group. It will walk the reader through an example checkout, commit, and update. For more
information on CVS in general, please read the cvs(1) man and info pages on server.

Table of Contents
1. Introduction and Overview...5

1.1. What is CVS?..5
1.2. Getting Started..5

1.2.1. Creating a Work Area...5
1.2.2. CVSROOT: Telling CVS Where Your Repository Is..6

1.3. Invoking CVS...6

2. checkout : How To Get The Source..7

3. commit : Making Changes...9

4. update : Keeping Your Sources Up to Date..11

4.1. Conflicts..11
4.2. Common Options..12

3

List of Examples
1-1. Creating a Work Area...5
1-2. Setting CVSROOT...6
2-1. Checking Out The Entire Tree...7
3-1. Sample Commit ofdoc/cvsguide/book.sgml ...9
4-1. Simple Conflict...11
4-2. A Sample Update...12

4

Chapter 1. Introduction and Overview

1.1. What is CVS?
CVS is a source code control system, much like RCS, SCCS, or PVCS. CVS is also an acronym. It
stands forConcurrentVersionsSystem. Unlike SCCS, RCS, and PVCS, however, CVS assumes that the
database of source code it is maintaining is not just used in one place. Instead, the work area and the
database area are completely seperate. This easily allows for multiple work areas. Other version control
systems require cutomized scripts and ugly hacks to enable multiple workspaces. This means that every
developer can check out their own copy of the tree in their home directory.

In addition to seperating the work area from the database area, CVS is designed to handle multiple
developers working on the same project at the same time. Thus, with CVS, developers do not need to
obtain a lock on a source file before they can modify it. Instead, CVS keeps track of what versions a
developer checked out. If another developer then makes changes to that file and commits those changes
to therepository(the database that CVS maintains) then the first developer will have to update their local
source tree before then can commit their changes. Fortunately, CVS automates the actual merging
process, making this process very simple.

1.2. Getting Started
Before you start working with CVS, you will need to do two things:

1. Create a work area to do your work in

2. Tell CVS where the repository that you will be using is.

1.2.1. Creating a Work Area
A work area is simply a subdirectory to store your checked-out copy of the source tree. I usually use a
work/ subdirectory under my home directory to work in. You can create one for yourself like so:

Example 1-1. Creating a Work Area

Make sure you are in your home directory.
> cd

Create the actual directory

5

Chapter 1. Introduction and Overview

> mkdir work

1.2.2. CVSROOT: Telling CVS Where Your Repository Is
To tell CVS where the repository that you will be using is, simply set the CVSROOT environment
variable to the directory containing the repository. For this project, the CVSROOT onserver is
/home/compiler/cvs . The following example shows how to setup CVSROOT.

Example 1-2. Setting CVSROOT

By default, your accoung will be usingtcsh for your shell. In that case, you would use the following
command to set CVSROOT:

> setenv CVSROOT /home/compiler/cvs

If you have changed your shell to a Bourne shell derivative such assh , ksh , or bash , then you would use
the following command:

CVSROOT=/home/compiler/cvs
export CVSROOT

Note: The CVSROOT variable is only used by the checkout command. If you have already checked
a source tree out, then CVS will know where you got it from automatically.

1.3. Invoking CVS
All of the functionality of CVS is stored in one binary. CVS commands are selected via a command line
parameter when cvs is invoked. For example, to run thecommit command, you would type in the
following:

> cvs commit
[output not shown]

6

Chapter 2. checkout : How To Get The Source
To be able to work on the code, you need to have a source tree of files that you can edit. To get a copy of
the source tree from CVS, you use thecheckout command. This command takes one required
argument and several optional switches. The mandatory argument specifies which part of the source tree
you would like to checkout. This argument must be the name of a directory inside of the repository. For
example, to check out all of the files in thesrc/ subdirectory, you would usesrc for the mandatory
argument. To check out everything, use the directory. .

Example 2-1. Checking Out The Entire Tree

Change into the work area
> cd ~/work
Checkout a copy of the source tree
> cvs checkout .
cvs checkout: Updating .
U Makefile
cvs checkout: Updating CVSROOT
U CVSROOT/checkoutlist
U CVSROOT/commitinfo
U CVSROOT/config
U CVSROOT/cvswrappers
U CVSROOT/editinfo
U CVSROOT/loginfo
U CVSROOT/modules
U CVSROOT/notify
U CVSROOT/rcsinfo
U CVSROOT/taginfo
U CVSROOT/verifymsg
cvs checkout: Updating doc
U doc/Makefile
cvs checkout: Updating doc/bnf
U doc/bnf/bnf.txt
cvs checkout: Updating doc/cvsguide
U doc/cvsguide/Makefile
U doc/cvsguide/book.sgml
cvs checkout: Updating doc/manual
U doc/manual/Makefile
U doc/manual/book.sgml
U doc/manual/contract.txt
U doc/manual/sampleProgram.txt
cvs checkout: Updating doc/misc
U doc/misc/slides.doc

7

Chapter 2.checkout : How To Get The Source

U doc/misc/source.odd
cvs checkout: Updating mk
U mk/doc.mk
U mk/subdir.mk
cvs checkout: Updating src
U src/Makefile
U src/README
cvs checkout: Updating src/lex
U src/lex/lexer.c
cvs checkout: Updating src/prep
cvs checkout: Updating src/symtab
U src/symtab/dll.c
U src/symtab/dll.h
U src/symtab/dll_lib.c
U src/symtab/dll_lib.h
U src/symtab/symtab.c
U src/symtab/symtab.h
cvs checkout: Updating src/syntax

8

Chapter 3. commit : Making Changes
With CVS, you do not have to lock files. Instead, you are free to modify the files in your work directory
as much as you want. Once you have tested your changes, you need to commit them to the repository so
that other developers can get them. This is done with thecommit command.

By default, thecommit command will commit all changes in the current directory and below. You can
limit the files whose changes are committed by explicitly listing the files and/or subdirectories that you
want to commit on the command line. For example, this command would commit all the changes in the
doc/cvsguide directory and any subdirectories:

> pwd
/v/home/john/work/compiler/doc/cvsguide
> cvs commit
[output not shown]

If I wanted to only commit the changes indoc/cvsguide/book.sgml , however, then I would use the
following command instead:

Example 3-1. Sample Commit ofdoc/cvsguide/book.sgml

> pwd
/v/home/john/work/compiler/doc/cvsguide
> cvs commit book.sgml

The screen will then clear and you will be thrown into vi(1) to compose the log message. For example, I
used the following log message for this commit:

Add in the first half of the commit section.

This commit is actually used inside of the CVS guide to demonstrate the
commit command.
CVS: ---
CVS: Enter Log. Lines beginning with ‘CVS:’ are removed automatically
CVS:
CVS: Committing in .
CVS:
CVS: Modified Files:
CVS: book.sgml
CVS: ---
~
~

9

Chapter 3.commit : Making Changes

~
~
~
~
~
~
~
~
~

I then exited vi(1) to save the log message. CVS then output the following before finishing.

Checking in book.sgml;
/home/compiler/cvs/doc/cvsguide/book.sgml,v <- book.sgml
new revision: 1.2; previous revision: 1.1
done

Voila, revision 1.2 ofdoc/cvsguide/book.sgml has just been checked in

Note: In order to commit changes to a file, you have to have the latest version checked out. If you do
not have the latest version checked out, then you can use the update command to update your
sources to the latest version. Once you have updated your sources and resolved any conflicts, you
may commit your changes.

10

Chapter 4. update : Keeping Your Sources Up to
Date

When other people change files in the repository, you need to be able to merge those changes into your
work area. CVS can do that for you via theupdate command. When you runcvs update , CVS
checks each file and directory that you have checked out. If any of the files are out of date (that is, a
newer version is in the repository than in your work area) then it updates your copy of the file to the
latest version. If you have modified one of the files in your work area, then CVS will preserve your
changes. It will, however, merge the changes between tbe version of the file that you last checked out or
updated to and the version in the repository into your file. For example, suppose you check out version
1.2 of a filelextest.c . Suppose that another developer also checks this file out and makes some
changes to it. This other developer makes some changes to a function namedGenerateTest and then
commits these changes to the repository with thecommit command. You also make some changes to
lextest.c but to a different function namedOutputResults . When you runcvs update , CVS will
update your copy oflextest.c to contain the new version ofGenerateTest written by the other
developer. However, CVS will preserve your newer version of theOutputResults function even
though you haven’t committed your changes yet.

4.1. Conflicts
As mentioned above, theupdate command will attempt to merge in all changes automatically.
However, if you and someone else both modify the same lines of the source, then CVS will not be able to
merge that change in. Instead it will inform you that there were conflicts and will store the conflicts in
the file that was updated. The conflicts are delimited by lines that contain seven less than and greater
than symbols. They are seperated by a line containing the seven equal signs.

Example 4-1. Simple Conflict

What CVS tells you when it detects a conflict:

> cvs update -A lexer.c
RCS file: /home/compiler/cvs/src/lex/lexer.c,v
retrieving revision 1.5
retrieving revision 1.6
Merging differences between 1.5 and 1.6 into lexer.c
rcsmerge: warning: conflicts during merge
cvs server: conflicts found in lexer.c
C lexer.c

Here’s the portion of the file that contains the conflict:

11

Chapter 4.update : Keeping Your Sources Up to Date

// double quotes likely indicate the start or end of quote mode
case ’"’:

if (!quoteMode)
quoteMode = 1;

«««< lexer.c
else if (quoteMode) a conflict demo

=======
else if ((quoteMode) && (lexer_oneLine[lexer_nextPosition+1] != ’"’))

»»»> 1.6
quoteMode = 0;

else
doubleQuote = 1;

break;

If you get a conflict, then you have to manually edit the file to determine what the final version of code in
conflict should be. Once you have done that, you should delete the lines containing the greater than, less
than, and equal signs. Then you may commit your changes. CVS will not let you commit your changes
until you have resolved all of the conflicts.

4.2. Common Options
There are a couple of flags that are usually used with theupdate command. The two most often used are
-d and-P . Note that multiple options can be combined into one option. In other words, instead of typing
cvs update -d -P , you can typecvs update -dP to get the same effect.

-d

This option allows theupdate command to check out subdirectories that are not currently checked
out. Thus, if someone else adds a new directory, this will get it for you. By default, cvs will only
update files in directories that you have already checked out.

-P

This option allows CVS to “prune” any empty directories that are left after updating the files. This
can happen when all of the files in a directory are removed via the remove command.

Example 4-2. A Sample Update

> cvs update
? src/lex/lexer

12

Chapter 4.update : Keeping Your Sources Up to Date

cvs server: Updating .
cvs server: Updating CVSROOT
cvs server: Updating doc
M doc/Makefile
cvs server: Updating doc/bnf
M doc/bnf/bnf.txt
cvs server: Updating doc/cvsguide
M doc/cvsguide/book.sgml
cvs server: Updating doc/manual
M doc/manual/Makefile
cvs server: Updating doc/misc
cvs server: Updating doc/share
cvs server: Updating mk
M mk/doc.mk
cvs server: Updating src
cvs server: Updating src/lex
P src/lex/lexer.c
U src/lex/lexer.h
cvs server: Updating src/prep
cvs server: Updating src/symtab
cvs server: Updating src/syntax

The letters prefixing the filenames indicate the status of any noteworthy files. The cvs(1) man page lists
these letters and their meanings. In this example, thesrc/lex/lexer file is a file in my work area that
is not in the repository. Thedoc/Makefile , doc/bnf/bnf.txt , doc/cvsguide/book.sgml ,
doc/manual/Makefile , andmk/doc.mk files in my work area have all been modified by me but not
had those modifications committed to the repository. Thesrc/lex/lexer.c andsrc/lex/lexer.h

were both updated to newer versions that had been checked into the repository by someone else.

13

