
OddBall Language Reference Manual

John Baldwin

Shrimohan Damani

Peter DePasquale

Caroline Larboulette

Michael Sonsini

Prashanth Suthrave

Jidesh Veeramachaneni

OddBall Language Reference Manual
by John Baldwin, Shrimohan Damani, Peter DePasquale, Caroline Larboulette, Michael Sonsini, Prashanth Suthrave,
and Jidesh Veeramachaneni

$Revision: 1.21 $ Edition
Published $Date: 1999/12/16 14:38:26 $

This manual is intended to server as a user’s manual to the OddBall programming language. It is geared towards
programmers who have had previous experience with an imperative programming language.

Table of Contents
1. Purpose...5

2. Name Value System...6

2.1. Scalars...6
2.2. Type Checking..7
2.3. Arrays..7
2.4. TheVARStatement..7

3. Control Structures:..9

4. Imperatives...10

4.1. Assignment Statements...10
4.2. Expressions...10

4.2.1. Operands...10
4.2.2. Operators..11

4.2.2.1. Arithmetic Operators...11
4.2.2.2. Logical Operators..12
4.2.2.3. Precedence...12
4.2.2.4. Associativity..13

5. Input and Output ...14

6. Abstractions...15

6.1. TheDEFINE Statement...15
6.2. Function Names..15
6.3. Function Parameters..15
6.4. Function Body...16
6.5. Return Values..16

A. Language Definition in EBNF..17

B. Sample Program..19

C. Sample Program...20

3

List of Tables
2-1. Properties of Scalar Types..6
4-1. Arithmetic Operators..11

List of Examples
2-1. Formal Definition of UNDEFINED...6
2-2. Variable Declarations...7
3-1. A Simple Loop...9
3-2. Conditional Execution (Branching)...9
4-1. A Simple Assignment..10
4-2. Valid Operands...10
4-3. Emulation of Logical Operators...12

4

Chapter 1. Purpose
The purpose of the OddBall programming language is to provide the programmer with a fundamental
and sufficient set of constructs with which to solve problems. Particularly, problems with a solution of a
mathematical nature are easy to model by the language. Further, some of the constructs found in
OddBall attempt to improve upon corresponding constructs found in other languages such as C.

5

Chapter 2. Name Value System
Identifiers are used to associate names with values in the OddBall language. Two primitive data types
(integers and characters) in OddBall. We also support arrays of integers and characters. Each identifier is
bound to a data type at compile time, and the type relationship can not be modified at run time.

Identifiers are identified by no more than 75 alphanumeric characters, the first of which must be an
<alphabet> .

2.1. Scalars
There are two scalar types in OddBall: integer and character. The integer type consists of a signed
integer that is the size of the machine word. For ease of explanation, the machine word size is assumed to
be 32 bits throughout this manual. The character type is a signed 8 bit integer. There is also a special
integer constant namedUNDEFINED. This constant is used to indicate an unknown, invalid, or undefined
value. It is also used as the default return value for functions that do not explicitly return a value. This
second property is used to define this value as follows:

Example 2-1. Formal Definition of UNDEFINED

DEFINE undefined_function () RUNS
STOP.

VAR
UNDEFINED : integer.

STOP.

...
undefined_function() -> UNDEFINED.
...

For now, theUNDEFINEDconstant will use the smallest possible integer value. This is so that the
constant impinges minimally on the range of the integer type. For example, if the integer type is 32 bits,
thenUNDEFINEDwould be0x80000000 . However, this is an implementation specific detail, and
programmers should not rely on this detail.

Table 2-1. Properties of Scalar Types

Type Range Operators

integer -2147483647 ... 2147483647 <, >, <=, >=, =, +, -, *, /, %, ->, ,

6

Chapter 2. Name Value System

character -128 ... 127 ->, ,

2.2. Type Checking
OddBall is designed to be a flexible language that is easy to use. Thus, it uses a very simplistic view of
types. OddBall is a weakly-typed language. It does not set strict boundaries between characters and
integers. Instead, character constants and variables are automatically promoted to integers before being
evaluated in an expression. If the receiving variable of an assignment operator is a character, then the
value of the expression on the right side of the operator is automatically demoted to a character just
before assignment.

2.3. Arrays
In addition to scalar types, OddBall also includes one dimensional arrays of both of its scalar types.
Arrays are allocated statically with a constant, fixed size in aVARstatement. Arrays may be passed to
functions, but they are passed by reference, not by value.

Array indices are integers in the range 1 ...array size . Individual elements of an array may be
indexed by postfixing the array variable name with an integer expression contained in bracket ([])
characters. For example, ifmyArray is an array of 10 integers, thenmyArray[4] references the 4th
integer in the array.

2.4. The VARStatement
TheVARstatement is used to declare variables. It consists of the keywordVARfollowed by a whitespace
character and then zero or more variable declaration statements. Each variable declaration statement
consists of a comma-separated list of one or more variables followed by a colon and a scalar type.
Scalars are declared by simply listing their name in a comma-separated list. Arrays are declared by
listing their name followed by the keywordOFfollowed by an array size. The example below declares a
scalar integerfoo , a scalar characterbar , and an integer arraybaz of 10 elements.

Example 2-2. Variable Declarations

VAR
foo, baz OF 10 : integer.
bar : character.

7

Chapter 2. Name Value System

STOP.

8

Chapter 3. Control Structures:
OddBall supports two basic control structures. The first is theCOND-LOOPSstatement, which repeats the
execution of a specific section of code, so long as a test condition is met. It is analogous to the
conventionalwhile loop statement in C. To construct aCOND-LOOPSstatement that displays a character
to the screen a variable number of times write:

Example 3-1. A Simple Loop

COND (localInt > 0) LOOPS
WRITE someChar.
localInt - 1 -> localInt.

STOP.

This loop writes someChar to the screen localInt times. On each iteration of the loop the value of localInt
is decremented by one until finally it reaches 0. Since the conditional expression is localInt > 0 the loop
terminates at this point. For an explanation of theWRITEstatement see the Input and Output section.

The second control is theCOND-RUNS-OTHERWISEstatement. This statement will execute the code
following theRUNSportion of the statement as long as a test condition is met. If the optionalOTHERWISE

portion of the statement appears and the test condition is not met, the code following theOTHERWISE

portion is executed. It is analogous to the conventionalIF-THEN-ELSE statement C. To construct a
COND-RUNS-OTHERWISEthat determines the maximum of two integers and stores the result in a third
integer write:

Example 3-2. Conditional Execution (Branching)

COND (firstInt > secondInt) RUNS
firstInt -> maximumInt.

STOP OTHERWISE RUNS
secondInt -> maximumInt.

STOP.

This conditional statement begins by determining if firstInt is greater than secondInt. If this is true the
code immediately following theRUNSkeyword executes and firstInt is stored in maximumInt. Execution
continues until theSTOP OTHERWISEkeywords are encountered. At this point execution continues from
the next statement following theSTOP OTHERWISEkeywords. If the condition is not true and thus
firstInt is not greater than secondInt the code immediately following theOTHERWISEkeyword executes
and secondInt is stored in maximumInt. Execution continues until theSTOPstatement is encountered at
which point execution proceeds starting from the next statement appearing after theSTOPstatement.

9

Chapter 4. Imperatives
Imperatives in OddBall include assignment statements, branches, loops, mathematical expressions, and
function calls.

The OddBall language, like other imperative language, supports assignment statements, various kinds of
operators, and other expressions.

4.1. Assignment Statements
The assignment operator is used to assign the value of an expression to a scalar variable. The assignment
operator is represented by the two-character symbol-> . In the assignment statement the target variable
in which the value is to be stored is on the right hand side of the assignment operator and the expression
whose value is to be calculated and assigned is written on the left side.

Example 4-1. A Simple Assignment

a + b -> c.

This statement calculates the sum of the values stored in the memory locations represented bya andb

and stores the resulting value in the memory location represented byc .

Here the element on the right hand side of the assignment operator must be a scalar variable. The
assignment operation cannot be mapped to numeric constants on the right hand side. The left hand side
can consist of any expression.

4.2. Expressions
Expressions consist of operands, or terms, which are joined by operators.

4.2.1. Operands
Operands in an expression are either variables, constants, or function calls. The value of a variable is the
value of the memory location represented by that variable. The value of a function call is the value
returned by that function. Integer constants are represented in decimal. Character constants are
represented in single quotes. The single quote character (’) is escaped by itself. Unprintable characters
are represented by a# character followed by a decimal value all of which is enclosed in quotes.

10

Chapter 4. Imperatives

Example 4-2. Valid Operands

fooBar $$ A variable
sqrt(2) $$ A function call
4 $$ An integer constant
’a’ $$ A character constant
”” $$ The ’ character constant
’#10’ $$ A newline character

4.2.2. Operators
OddBall supports two kind of operators: arithmetic operators and logic operators.

4.2.2.1. Arithmetic Operators

Table 4-1 lists the arithmetic operators supported by OddBall along with their precedence. Each of the
operators take scalar arguments and apply to both integers and characters.

Table 4-1. Arithmetic Operators

Operator Symbol Precedence Associativity Type

Grouping () +5 left-to-right unary

Multiplication * 5 left-to-right binary

Division / 5 left-to-right binary

Modulus % 5 left-to-right binary

Negation - 4 right-to-left unary

Addition + 3 left-to-right binary

Subtraction - 3 left-to-right binary

Comparison
Operators

<, >, =, <=, >= 2 left-to-right binary

Assignment -> 1 left-to-right binary

Concatenation , 0 left-to-right binary

All of the arithemetic operators perform their expected function.

The comparison operators return a value of 0 if the comparison fails and a value of 1 if the comparison
succeeds.

11

Chapter 4. Imperatives

4.2.2.2. Logical Operators

OddBall does not include built-in support for logical operators such asand , or , xor , andnot . However,
since the comparison operators return 0 or 1, logical operators can be easily simulated via arithmetic.

To emulateand , simply multiply the results of two comparisons together. If both comparisons are true,
then the multiplications will return 1, otherwise, it will return 0.

To emulate inclusiveor , add the results of two comparisons together. If either of the results, or if both of
the results are true, then the addition will return a value greater than 0.

To emulate exclusive or,xor , add the results of two comparisons and then test the result to see if it is
equal to 1. This effectively removes the inclusive case from the inclusive or defined above.

To emulatenot , test the result of a comparison to see if it is equal to 0. If the comparison failed and
returned 0, then the test will return 1. If the comparison succeeded and returned 1, then the test will
return 0.

The following code fragment demonstrates these four operations.

Example 4-3. Emulation of Logical Operators

$ emulate the condition (a > b) AND (b > c)
cond ((a > b) * (b > c)) runs

writeln "A is greater than B and B is greater than C".
stop.

$ emulate the condition (a > b) OR (b > c)
cond ((a > b) + (b > c)) runs

writeln "A is greater than B or B is greater than C or both".
stop.

$ emulate the condition (a > b) XOR (b > c)
cond ((a > b) + (b > c) = 1) runs

writeln "A is greater than B or B is greater than C, but not both".
stop.

$ emulates the condition NOT (a > b)
cond ((a > b) = 0) runs

writeln "A is not greater than B".
stop.

12

Chapter 4. Imperatives

4.2.2.3. Precedence

Precedence determines the order in which operators are evaluated. Operators with higher precedence are
executed before those with lesser precedence. Thus,a * b + c is evaluated as(a * b) + c , anda +

b * c is evaluated asa + (b * c) . The parentheses, or grouping operators, are special with regards to
precedence. They are only pseudo-operators who do not have an actual precedence. Instead, they
increase the precedence of all operators in the subexpression that they contain. Thus, in the expression
(a + b) * (c + d) , the+ operators have higher precedence then the* operator, so they are evaluated
first.

4.2.2.4. Associativity

Associativity determines the order in which operators of the same precedence are processed.
“Left-to-right” operators give higher precedence to operators that are farther to the left in an expression.
For example,a * b / c is evaluated as(a * b) / c instead ofa * (b / c) . Similarly,
“right-to-left” operators give higher precedence to operators that are farther to the right. Thus,-a is
evaluated as-(-a) instead of(-)a (which does not make much sense).

13

Chapter 5. Input and Output
Both input and output are supported by OddBall. TheREADstatement allows for the user to input the
value of an integer, a single character or an array of characters (string), depending on the destination of
the value.

Output is achieved with either of theWRITEor WRITELNstatements which print strings, variables (or
combinations of both) to the output medium (standard output). TheWRITEstatement suppresses a
trailing new line character after the output is printed, theWRITELNcommand adds it automatically.

A proposed web based interface to OddBall is being researched. Because OddBall can take interactive
input on the command line a command line emulator may be necessary. We believe that emulating the
command line in a web interface is beyond the scope of this project. However, much of the functionality
of OddBall can be demonstrated in a web interface with little additional development. Therefore, a
decision has been made to complete the initial OddBall compiler and if time permits, to develop a web
interface.

14

Chapter 6. Abstractions
OddBall contains abstractions for functions and programs. Theprogram function is the main executable
body and programmatic starting point. Its abstraction properties are the same as that of any other function

Subprograms, or functions, are defined by theDEFINE statement, which denotes the function’s name,
parameter list and function body. Every function’s name is an identifier, following the same rules as
variable identifiers (see above). The parameter list is defined to be zero or more variable identifiers and
their types. Integer and character parameters are passed by value to subprograms. Arrays of integers and
characters are passed by reference.

Functions can not change the value of scalar parameters, although they can change the elements of array
parameters. Functions can change the value of global variables. Also, like Pascal and C, local variables
take precedence over global variables in case of a variable naming conflict. As far as semantics are
concerned, function parameter variables are treated exactly the same as local variables.

A function cannot be called until it has been defined with theDEFINE statement.

6.1. The DEFINE Statement
TheDEFINE statement defines the data and actions associated with a function. TheDEFINE keyword is
followed by the function name (the first executable body has the fixed nameprogram). Next comes the
parameter list. The parameter list consists of a list of zero or more variables along with their types inside
of parentheses. After this comes the keyword STOP followed by the function body, which is a sequence
of declarative and/or executable statements. Every functions ends with theSTOPkeyword followed by a
period.

6.2. Function Names
As defined in the BNF, function names are identifiers which follow the same restrictions as variable
names.

6.3. Function Parameters
The parameter list is a list of variables passed to the function from the calling function. A function can
have any number of arguments. Scalars are passed by value, and arrays are passed by reference. Thus, if
a functionfoo is defined to receive two variablesa andb which are of type integer and array,

15

Chapter 6. Abstractions

respectively, thena is passed by value andb is passed by reference. If the function changes the value of
a and and the value of an element ofb, only the change inb is reflected back to the calling function.

6.4. Function Body
A function body can consist of zero or more executive or declarative statements. Local variables may be
defined in aVARdeclarative statement.

6.5. Return Values
Every function returns a value. A function can set the value to be returned by assigning a value to an
implicitly declated local integer variable whose name is identical to that of the function’s. Thus, it is a
sematic error to declare a local variable with the same name as the function it is declared in. If an explicit
return value is not assigned, then the function will return the constantUNDEFINED.

16

Appendix A. Language Definition in EBNF
Here is the formal syntax for OddBall in extended BNF.

<program > ::= { <declaration > . }+
<declaration > ::= <functiondef > | <variabledecls >

<functiondef > ::= DE-
FINE <whitespace > <identifier > ({ <parameters >}0/1) <actions > STOP
<identifier > ::= <alphabet > { <idchar >}*
<parameters > ::= <varlist > {; <varlist >}*
<varlist > ::= <variabledecl > {, <variabledecl >}* : <type >

<variabledecl > ::= <identifier > { <whitespace > OF <constant >}0/1
<type > ::= INTEGER | CHARACTER
<variabledecls > ::= VAR <whitespace > { <varline >}0/1 STOP
<varline > ::= { <varlist > .}+
<actions > ::= { <action > .}*
<action > ::= <expression > | <input > | <output > | <variabledecls > | <conditional > | <loop >

<expression > ::= <condition > {- > <variable >}0/1
<condition > ::= <term > { <relation > <term >}*
<relation > ::= = | < | > | <= | >=
<term > ::= <simplefactor > { <termop > <simplefactor >}*
<termop > ::= + | -
<simplefactor > ::= {-}* <factor >

<factor > ::= <subexpression > { <factorop > <subexpression >}*
<factorop > ::= * | / | %
<subexpression > ::= <variable > | <constant > | (<expression >) | <functioncall >

<variable > ::= <identifier > {[<expression >]}0/1
<conditional > ::= COND (<expression >) RUNS <actions > STOP {<whitespace > OTH-
ERWISE <whitespace > RUNS<actions > STOP }
<loop > ::= COND (<expression >) LOOPS <actions > STOP
<functioncall > ::= <identifier > (<parameterlist >)
<parameterlist > ::= <expression > { , <expression >}*
<input > ::= READ <whitespace > <variable >

<output > ::= <sameline > | <nextline >

<sameline > ::= WRITE <whitespace > <showlist >

<nextline > ::= WRITELN <whitespace > <showlist >

<showlist > ::= <showitem > {, <showitem >}*
<showitem > ::= " <text >" | <expression >

<text > ::= { <textconstant >}+
<alphabet > ::= [A-Za-z]
<digit > ::= [0-9]
<idchar > ::= <alphabet > | <digit > | _
<constant > ::= <integer > | <character > | UNDEFINED
<character > ::= ’ <characterconstant >’ | #integer

17

Appendix A. Language Definition in EBNF

<textconstant > ::= <printabletextchar > | ""
<characterconstant > ::= <printablechar > | ”
<printablechar > ::= all printable characters except ’
<printabletextchar > ::= all printable characters except for "
<integer > ::= { <digit >}+
<whitespace > ::= space character | tab character | newline

18

Appendix B. Sample Program
This program demonstrates most of the statements of OddBall.

$$ Mess around with some random output
DEFINE subfunc (anInt : integer; someChar: character) RUNS

VAR localInt : integer STOP.

anInt -> localInt.

WRITELN "This is the output from the subfunction".
WRITELN "The parameters were ", anInt, "and ", someChar.
COND (localInt > 0) LOOPS

WRITE someChar.
localInt - 1 -> localInt.

STOP.
STOP.

$$ The program function defines the start of execution for the main program.
DEFINE program () RUNS

VAR getInteger : integer. $$ a scalar integer variable
getChar : character. $$ a scalar character variable

STOP.

$$ Prompt for and read in an integer
WRITELN "Enter an integer.".
READ getInteger.

$$ Prompt for and read in a character
WRITELN "Enter a character.".
READ getChar.

subfunc (getInteger, getChar).
STOP.

19

Appendix C. Sample Program
This function takes the positive x co-ordinates of two points on a number line. The functions determines
the minimum co-ordinate of the two. It simulates the movements of the lower point towards the other
point using textual output. Finally it returns the number of steps traveled to the calling function.

define cover_distance (a,b : integer) runs
var

equal,min : integer.
steps : integer.

stop.

0 -> equal.
cond(a < b) runs

a -> min.
stop
otherwise runs

cond (a > b) runs
b -> min.

stop
otherwise runs

1 -> equal.
stop.

stop.

cond (min = a) runs
cond (a < b) loops

a + 1 -> a.
steps + 1 -> steps.
writeln "point a reaching point b".

stop.
stop
otherwise runs

cond (min = b) runs
cond (b < a) loops

b + 1 -> b.
steps + 1 -> steps.
writeln "point b reaching point a".

stop.
stop.

stop.

cond (equal = 1) runs
2 -> cover_distance.

20

Appendix C. Sample Program

stop
otherwise runs

steps -> cover_distance.
stop.

stop.

define program () runs
var

a,b,result : integer.
stop.

5 -> a.
10 -> b.

cover_distance(a, b) -> result.

cond (result = -2) runs
writeln "The points had the same horizontal coordinates.".

stop
otherwise runs

writeln "The number of steps covered is ", result.
stop.

stop.

21

