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1. Introduction
The Advanced Configuration and Power Interface (ACPI) specification is the key element in Operating System
Directed Power Management (OSPM). OSPM and ACPI both apply to all classes of computers, explicitly
including desktop, mobile, home, and server machines.

ACPI evolves the existing collection of power management BIOS code, APM APIs, PNPBIOS APIs, and so on
into a well-specified power management and configuration mechanism. It provides support for an orderly
transition from existing (legacy) hardware to ACPI hardware, and it allows for both mechanisms to exist in a
single machine and be used as needed.

Further, new system architectures are being built that stretch the limits of current Plug and Play interfaces.
ACPI evolves the existing motherboard configuration interfaces to support these advanced architectures in a
more robust, and potentially more efficient manner.

This document describes the structures and mechanisms necessary to move to operating system (OS) directed
power management and enable advanced configuration architectures — that is, the structures and mechanisms
necessary to implement ACPI-compatible hardware and to use that hardware to implement OSPM support.

1.1 Principal Goals
ACPI is the key element in implementing OSPM. ACPI is intended for wide adoption to encourage hardware
and software vendors to build ACPI-compatible (and, thus, OSPM-compatible) implementations.

The principal goals of ACPI and OSPM are to:
1. Enable all PCs to implement motherboard configuration and power management functions, using

appropriate cost/function tradeoffs.
• PCs include mobile, desktop, workstation, server, and home machines.
• Machine implementers have the freedom to implement a wide range of solutions, from the very simple

to the very aggressive, while still maintaining full OS support.
• Wide implementation of power management will make it practical and compelling for applications to

support and exploit it. It will make new uses of PCs practical and existing uses of PCs more
economical.

2. Enhance power management functionality and robustness.
• Power management policies too complicated to implement in a ROM BIOS can be implemented and

supported in the OS, allowing inexpensive power managed hardware to support very elaborate power
management policies.

• Gathering power management information from users, applications, and the hardware together into the
OS, will enable better power management decisions and execution.

• Unification of power management algorithms in the OS will reduce opportunities for miscoordination
and will enhance reliability.

3. Facilitate and accelerate industry-wide implementation of power management.
• OSPM and ACPI will reduce the amount of redundant investment in power management throughout the

industry, as this investment and function will be gathered into the OS. This will allow industry
participants to focus their efforts and investments on innovation rather than simple parity.

• The OS can evolve independently of the hardware, allowing all ACPI-compatible machines to gain the
benefits of OS improvements and innovations.

• The hardware can evolve independently from the OS, decoupling hardware ship cycles from OS ship
cycles and allowing new ACPI-compatible hardware to work well with prior ACPI-compatible
operating systems.

4. Create a robust interface for configuring motherboard devices.
• Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale
It is necessary to move power management into the OS and to use an abstract interface (ACPI) between the OS
and the hardware to achieve the principal goals set forth above.
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• Today, power management only exists on a subset of PCs. This inhibits application vendors from
supporting or exploiting it.
• Moving power management functionality into the OS makes it available on every machine that the OS

is installed on. The level of functionality (power savings, etc) will vary from machine to machine, but
users and applications will see the same power interfaces and semantics on all OSPM machines.

• This will enable application vendors to invest in adding power management functionality to their
products.

• Today, power management algorithms are restricted by the information available to the BIOS that
implements them. This limits the functionality that can be implemented.
• Centralizing power management information and directives from the user, applications, and hardware

in the OS allows implementation of more powerful functionality. For example, an OS could have a
policy of dividing I/O operations into normal and lazy. Lazy I/O operations (such as a word processor
saving files in the background) would be gathered up into clumps and done only when the required I/O
device is powered up for some other reason. A non-lazy I/O request when the required device was
powered down would cause the device to be powered up immediately, the non-lazy I/O request to be
carried out, and any pending lazy I/O operations to be done. Such a policy requires knowing when I/O
devices are powered up, knowing which application I/O requests are lazy, and being able to assure that
such lazy I/O operations do not starve.

• Appliance functions, such as answering machines, require globally coherent power decisions. For
example, a telephone answering application could call the OS and assert, “I am waiting for incoming
phone calls; any sleep state the system enters must allow me to wake up and answer the telephone in 1
second.” Then, when the user presses the “off” button, the system would pick the deepest sleep state
consistent with the needs of the phone answering service.

• BIOS code has become very complex to deal with power management, it is difficult to make work with an
OS and is limited to static configurations of the hardware.
• There is much less state for the BIOS to retain and manage (because the OS manages it).
• Power management algorithms are unified in the OS, yielding much better integration between the OS

and the hardware.
• Because additional ACPI tables are loaded when docks, and so on are connected to the system, the OS

can deal with dynamic machine configurations.
• Because the BIOS has fewer functions and they are simpler, it is much easier (and, therefore, cheaper)

to implement.
• The existing structure of the PC platform constrains OS and hardware designs.

• Because ACPI is abstract, the OS can evolve separately from the hardware and, likewise, the hardware
from the OS.

• ACPI is by nature more portable across operating systems and processors. ACPI’s command methods
allow very flexible implementations of particular features.

1.3 Legacy Support
ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows for both
mechanisms to exist in a single machine and be used as needed.

Table 1-1  Hardware Type vs. OS Type Interaction

Hardware                  \ OS Legacy OS OSPM/ACPI OS
Legacy hardware A legacy OS on legacy hardware

does what it always did.
If the OS lacks legacy support, legacy
support is completely contained within the
hardware functions.

Legacy and ACPI
hardware support in
machine

It works just like a legacy OS on
legacy hardware.

During boot, the OS tells the hardware to
switch from legacy to OSPM/ACPI mode
and from then on the system has full
OSPM/ACPI support.

ACPI-only hardware There is no power management. There is full OSPM/ACPI support.
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Planned future versions of the Microsoft® Windows 95® and Windows NT® operating systems are examples of
ACPI-compatible operating systems categorized in the right-most column of the previous table. Future ACPI-
compatible versions of Windows 95 will provide the same legacy support as the current version of Windows 95.

1.4 OEM Implementation Strategy
Any OEM is, as always, free to build hardware as they want. Given the existence of the ACPI specification, two
general implementation strategies are possible.
• An OEM can adopt the OS vendor-provided ACPI driver and implement the hardware part of the ACPI

specification (for a given platform) in one of many possible ways.
• An OEM can develop a driver and hardware that are not ACPI-compatible. This strategy opens up even

more hardware implementation possibilities. However, OEMs who implement hardware that is OSPM-
compatible but not ACPI-compatible will bear the cost of developing, testing, and distributing drivers for
their implementation.

1.5 Power and Sleep Buttons
OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that is a
“soft” button that does not turn the machine physically off but signals the OS to put the machine in a soft off or
sleeping state.  ACPI defines two types of these “soft” buttons: one for putting the machine to sleep and one for
putting the machine in soft off.
This gives the OEM two different ways to implement machines: A one button model or a two button model.
The one button model has a single button that can be used as a power button or a sleep button as determined by
user settings.  The two-button model has an easily accessible sleep button and a separate power button. In either
model, an override feature that forces the machine off or reset without OS consent is also needed to deal with
various rare, but problematic, situations.

1.6 ACPI Specification and the Structure Of ACPI
This specification defines the ACPI interfaces; that is, the interfaces between the OS software, the hardware, and
BIOS software. This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to ACPI and how they relate to each other.
This specification describes the interfaces between components, the contents of the ACPI Tables, and the related
semantics of the other ACPI components. Note that the ACPI Tables, which describe a particular platform’s
hardware, are at heart of the ACPI implementation and the role of the ACPI BIOS is primarily to supply the
ACPI Tables (rather than an API).

ACPI is not a software specification, it is not a hardware specification, although it addresses both software and
hardware and how they must behave. ACPI is, instead, an interface specification.
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Figure 1-1  OSPM/ACPI Global System

There are three runtime components to ACPI:
• ACPI Tables - These tables describe the interfaces to the hardware. Some descriptions limit what can be

built (for example, some controls are embedded in fixed blocks of registers, and the table specifies the
address of the register block). Most descriptions allow the hardware to be built in arbitrary ways, and can
describe arbitrary operation sequences needed to make the hardware function. ACPI Tables can make use of
a p-code type of language, the interpretation of which is performed by the OS. That is, the OS contains and
uses an AML interpreter that executes procedures encoded in AM and stored in the ACPI tables; ACPI
Machine Language (AML) is a compact, tokenized, abstract kind of machine language.

• ACPI Registers - The constrained part of the hardware interface, described (at least in location) by the
ACPI Tables.

• ACPI BIOS - Refers to the portion of the firmware that is compatible with the ACPI specifications.
Typically, this is the code that boots the machine (as legacy BIOSs have done) and implements interfaces
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for sleep, wake, and some restart operations. It is called rarely, compared to a legacy BIOS. The ACPI
Description Tables are also provided by the ACPI BIOS. Note that in the figure above, the boxes labeled
“BIOS” and “ACPI BIOS” refer to the same component on a platform; the box labeled “ACPI BIOS” is
broken out to emphasize that a portion of the BIOS is compatible with the ACPI specifications.

1.7 Minimum Requirements for OSPM/ACPI Systems

The minimum requirements for an OSPM/ACPI-compatible system are:
• A power-management timer (for more information, see section 4.7.2.1).
• A power or sleep button (for more information, see section 4.7.2.2).
• A real time clock wakeup alarm, (for more information, see section 4.7.2.4).
• Implementation of at least one system sleep state (for more information, see section 9.1).
• Interrupt events generate System Control Interrupts (SCIs) and the GP_STS hardware registers are

implemented (for more information, see section 4.7.4.3).
• A Description Table provided in firmware (in the ACPI BIOS) for the platform system (main) board. For

more information, see section 5.2)
• A user accessible fail-safe mechanism to either unconditionally reset or turn off the machine.

The minimum requirements for an OSPM/ACPI-compatible operating system are:
• Support for the following interfaces.

• Interfaces specific to the IA platform:
• The ACPI extended E820 memory reporting interface (for more information, see section 14).

• Smart Battery, Selector, and Charger specifications.
• All ACPI devices defined within this specification (for more information, see section 5.6.4).
• The ACPI thermal model.
• The power button as implemented in the fixed feature space (for more information, see section

4.6.2.2.1).
• ACPI AML interpreter.
• Plug and Play configuration support.
• OS-driven power management support (device drivers are responsible for restoring device context as

described by the Device Power Management Class Specifications).
• Support the S1-S3 system sleeping states.

1.8 Target Audience
This specification is intended for the following users:
• OEMs who will be building ACPI-compatible hardware.
• Suppliers of ACPI-compatible operating systems, device drivers, and so on.
• Builders of ACPI descriptor tables and builders of tools to aid in constructing such tables.
• Authors of BIOS and Firmware codes.
• CPU and chip set vendors.
• Peripheral vendors.

1.9 Document Organization
The ACPI specification document is organized into four parts.
• The first part of the specification (sections 1, 2, and 3) introduces ACPI and provides an executive

overview.
• The second part of the specification (sections 4 and 5) defines the ACPI hardware and software

programming models.
• The third part (sections 6 through 13) specifies the ACPI implementation details; this part of the

specification is primarily for developers.
• The fourth part (sections 14 through 16) are technical reference sections; section 15 is the ACPI Source

Language (ASL) reference, parts of which are referred to by most of the other sections in the document.
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1.9.1 ACPI Overview
The first three sections of the specification provide an executive overview of ACPI.
• Section 1. Introduction: Discusses the purpose and goals of the specification, presents an overview of the

ACPI-compatible system architecture, specifies the minimum requirements for an ACPI-compatible system,
and provides references to related specifications.

• Section 2. Definition of terms: Defines the key terminology used in this specification. In particular, the
global system states (Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep) are defined in
this section, along with the device power state definitions: Fully Off (D3), D2, D1, and Fully-On (D0).

• Section 3. Overview: Gives an overview of the ACPI specification in terms of the functional areas covered
by the specification: system power management, device power management, processor power management,
Plug and Play, handling of system events, battery management, and thermal management.

1.9.2 Programming Models

Sections 4 and 5 define the ACPI hardware and software programming models. This part of the specification is
primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification that follow (all
the rest of the sections of the specification) are based on the models defined in sections 4 and 5. These sections
are the heart of the ACPI specification. There are extensive cross-references between the two sections.
• Section 4. Hardware: Defines a set of hardware interfaces that meet the goals of this specification.
• Section 5. Software: Defines a set of software interfaces that meet the goals of this specification.

1.9.3 Implementation Details

The third part of the specification defines the implementation details necessary to actually build components that
work on an ACPI-compatible platform. This part of the specification is primarily for developers.
• Section 6. Configuration: Defines the reserved Plug and Play objects used to configure and assign resources

to devices, and share resources and the reserved objects used to track device insertion and removal. Also
defines the format of ACPI-compatible resource descriptors.

• Section 7. Power Management: Defines the reserved device power management objects and the reserved
system power management objects.

• Section 8. Processor Control: Defines how the OS manages the processors’ power consumption and other
controls while the system is in the working state.

• Section 9. Implementing Waking/Sleeping: Defines in detail the transitions between system working and
sleeping states and their relationship to wake-up events. Refers to the reserved objects defined in sections 6,
7, and 8.

• Section 10: ACPI-Specific Devices: Lists the integrated devices that need support for some device-specific
ACPI controls, along with the device-specific ACPI controls that can be provided. Most device objects are
controlled through generic objects and control methods and have generic device IDs; this section discusses
the exceptions.

• Section 11. Power Source Devices: Defines the reserved battery device and AC adapter objects.
• Section 12. Thermal Management: Defines the reserved thermal management objects.
• Section 13. Embedded Controller and SMBus: Defines the interfaces between an ACPI-compatible OS and

an embedded controller and between an ACPI-compatible OS and an SMBus controller.

1.9.4 Technical Reference

The fourth part of the specification contains reference material for developers.
• Section 14. Query System Address Map. Explains the special INT 15 call for use in ISA/EISA/PCI bus-

based systems. This call supplies the OS with a clean memory map indicating address ranges that are
reserved and ranges that are available on the motherboard.

• Section 15. ACPI Source Language (ASL) Reference. Defines the syntax of all the ASL statements that can
be used to write ACPI control methods, along with example syntax usage.
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• Section 16. ACPI Machine Language (AML) Specification: Defines the grammar of the language of the
ACPI virtual machine language. An ASL translator (compiler) outputs AML.

1.10 Related Documents
Power management and Plug and Play specifications for legacy hardware platforms are the following, available
from http://www.microsoft.com/hwdev/specs/:
• Advanced Power Management (APM) BIOS Specification, Revision 1.2
• Plug and Play BIOS Specification, Version 1.0a
Other specifications relevant to the ACPI specification are:
• Smart Battery Charger Specification, Revision 1.0, Duracell/Intel, Inc., June, 1996
• Smart Battery Data Specification, Revision 1.0, Duracell/Intel, Inc., February, 1995
• Smart Battery System Windows Programming Interface, Revision 1.0, Intel Inc., February, 1995
• System Management Bus BIOS Interface Specification, Revision 1.0, February, 1995
• System Management Bus Specification, Revision 1.0, Intel, Inc., February, 1995
• System Management Bus Windows Programming Interface, Revision 1.0, Intel Inc., February, 1995
• The I2C-Bus and How To Use It (includes the specification), Philips Semiconductors, January 1992

Documentation and specifications for the “On Now” power management initiative available from
http://www.microsoft.com/hwdev/onnow.htm:
• Toward the “On Now” Machine: The Evolution of the PC Platform.
• Device Class Power Management Specifications:

• Device Class Power Management Reference Specification: Audio Device Class
• Device Class Power Management Reference Specification: Communications Device Class
• Device Class Power Management Reference Specification: Display Device Class
• Device Class Power Management Reference Specification: Input Device Class
• Device Class Power Management Reference Specification: Network Device Class
• Device Class Power Management Reference Specification: PC Card Controller Device Class
• Device Class Power Management Reference Specification: Storage Device Class



Intel/Microsoft/Toshiba

2. Definition of Terms
This specification uses a particular set of terminology, defined in this section. This section has three parts:
• General ACPI terms are defined (the definitions are presented as an alphabetical list).
• The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system

states apply to the entire system, and are visible to the user.
• The ACPI device power states are defined. Device power states are states of particular devices; as such,

they are generally not visible to the user. For example, some devices may be in the off state even though the
system as a whole is in the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology

 ACPI:
Advanced Configuration and Power Interface - as defined in this document, a method for describing
hardware interfaces in terms abstract enough to allow flexible and innovative hardware implementations and
concrete enough to allow shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware:
Computer hardware with the features necessary to support OSPM and with the interfaces to those features
described using the Description Tables as specified by this document.

ACPI Name Space:
The ACPI Name Space is a hierarchical tree structure in OS-controlled memory that contains named
objects. These objects may be data objects, control method objects, bus/device package objects, etc. The
OS dynamically changes the contents of the Name Space at run time by loading and/or unloading definition
blocks from the ACPI Tables that reside in the ACPI BIOS. All the information in the ACPI Name Space
comes from the Differentiated System Description Table, which contains the Differentiated Definition
Block, and one or more other definition blocks.

AML:
ACPI control method Machine Language. Pseudocode for a virtual machine supported by an ACPI-
compatible operating system and in which ACPI control methods are written. The AML encoding definition
is provided in section 16.

ASL:
ACPI control method Source Language. The programming language equivalent for AML . ASL is compiled
into AML images. The ASL statements are defined in section 15.

Control Method:
A control method is a definition of how the OS can perform a simple hardware task. For example, the OS
invokes control methods to read the temperature of a thermal zone. Control methods are written in an
encoded language called AML that can be interpreted and executed by the ACPI-compatible OS. An ACPI-
compatible system must provide a minimal set of control methods in the ACPI tables. The OS provides a set
of well-defined control methods that ACPI table developers can reference in their control methods. OEMs
can support different revisions of chip sets with one BIOS by either including control methods in the BIOS
that test configurations and respond as needed or by including a different set of control methods for each
chip set revision.

CPU, or processor:
The central processor unit (CPU), or processor, is the part of a platform that executes the instructions that
do the work. An ACPI-compatible OS can balance processor performance against power consumption and
thermal states by manipulating the processor clock speed and cooling controls. The ACPI specification
defines a working state, labeled G0, in which the processor executes instructions. Processor low power
states, labeled C1 through C3, are also defined. In the low power states the processor executes no
instructions, thus reducing power consumption and, potentially, operating temperatures. For more
information, see section 8.

Definition Block:
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A definition block contains information about hardware implementation and configuration details in the
form of data and control methods, encoded in AML. An OEM can provide one or more definition blocks in
the ACPI Tables. One definition block must be provided: the Differentiated Definition Block, which
describes the base system. Upon loading the Differentiated Definition Block, the OS inserts the contents of
the Differentiated Definition Block into the ACPI Name Space. Other definition blocks, which the OS can
dynamically insert and remove from the active ACPI Name Space, can contain references to the
Differentiated Definition Block. For more information, see section 5.2.7.

Device:
Hardware components outside the core chip set of a platform. Examples of devices are LCD panels, video
adapters, IDE CD-ROM and hard disk controllers, COM ports, etc. In the ACPI scheme of power
management, buses are devices. For more information, see section 3.3.2.

Device Context:
The variable data held by the device; it is usually volatile. The device might forget this information when
entering or leaving certain states (for more information, see section 2.3),  in which case the OS software is
responsible for saving and restoring the information. Device Context refers to small amounts of information
held in device peripherals. See System Context.

Differentiated System Description Table:
An OEM must supply a Differentiated System Description Table (DSDT) to an ACPI-compatible OS. The
DSDT contains the Differentiating Definition Block, which supplies the implementation and configuration
information about the base system. The OS always inserts the DSDT information into the ACPI Name
Space at system boot time, and never removes it.

Embedded Controller:
Embedded controllers are the general class of microcontrollers used to support OEM-specific
implementations, mainly in mobile environments. The ACPI specification supports embedded controllers in
any platform design, as long as the microcontroller conforms to one of the models described in this section.
The embedded controller performs complex low-level functions, through a simple interface to the host
microprocessor(s).

Embedded Controller Interface:
ACPI defines a standard hardware and software communications interface between an OS driver and an
embedded controller. This allows any OS to provide a standard driver that can directly communicate with
an embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers (for example, Smart Battery and AML code). This in
turn enables the OEM to provide platform features that the OS and applications can use.

Firmware ACPI Control Structure:
The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the BIOS uses for
handshaking between the firmware and the OS, and is passed to an ACPI-compatible OS via the Fixed
ACPI Description Table (FACP). The FACS contains the system’s hardware signature at last boot, the
firmware waking vector, and the global lock.

Fixed ACPI Description Table:
An OEM must provide a Fixed ACPI Description Table (FACP) to an ACPI-compatible OS in the Root
System Description Table. The FACP contains the ACPI Hardware Register Block implementation and
configuration details the OS needs to direct management of the ACPI Hardware Register Blocks, as well as
the physical address of the Differentiated System Description Table (DSDT) that contains other platform
implementation and configuration details. The OS always inserts the name space information defined in the
Differentiated Definition Block in the DSDT into the ACPI Name Space at system boot time, and the OS
never removes it.

Fixed Features:
A set of features offered by an ACPI interface. The ACPI specification places restrictions on where and
how the hardware programming model is generated. All fixed features, if used, are implemented as
described in this specification so that the ACPI driver can directly access the fixed feature registers.

Fixed Feature Events:
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A set of events that occur at the ACPI interface when a paired set of status and event bits in the fixed feature
registers are set at the same time. While a fixed feature event occurs an SCI is raised. For ACPI fixed-
feature events, the ACPI driver (or an ACPI-aware driver) acts as the event handler.

Fixed Feature Registers:
A set of hardware registers in fixed feature register space at specific address locations in system IO address
space. ACPI defines register blocks for fixed features (each register block gets a separate pointer from the
FACP ACPI table). For more information, see section 4.6.

General Purpose Event (GPE) Registers:
The general purpose event registers contain the event programming model for generic features. All generic
events generate SCIs.

Generic Feature:
A generic feature of a platform is value-added hardware implemented through control methods and general-
purpose events..

Global System States:
Global system states apply to the entire system, and are visible to the user. The various global system states
are labeled G0 through G3 in the ACPI specification. For more information, see section 2.2.

Ignored Bits:
Some unused bits in ACPI hardware registers are designated as “Ignored” in the ACPI specification.
Ignored bits are undefined and can return zero or one (in contrast to reserved bits that always return zero).
Software ignores  ignored bits in ACPI hardware registers on reads and preserves ignored bits on writes.

Intel Architecture-Personal Computer (IA-PC):
A general descriptive term for computers built with processors conforming to the architecture defined by the
Intel processor family based on the 486 instruction set and having an industry-standard PC architecture.

Legacy:
A computer state where power management policy decisions are made by the platform hardware/firmware
shipped with the system. The legacy power management features found in today’s systems are used to
support power management in a system that uses a legacy OS that does not support the OS-directed power
management architecture.

Legacy Hardware:
A computer system that has no ACPI or OSPM power management support.

Legacy OS:
An operating system that is not aware of and does not direct power management functions of the system.
Included in this category are operating systems with APM 1.x support.

Multiple APIC Description Table:
The Multiple APIC Description Table (APIC) is used on systems supporting the APIC to describes the
APIC implementation. Following the Multiple APIC Description Table is a list of APIC structures that
declare the APIC features of the machine.

Object:
The nodes of the ACPI Name Space are objects inserted in the tree by the OS using the information in the
system definition tables. These objects can be data objects, package objects, control method objects, etc.
Package objects refer to other objects. Objects also have type, size, and relative name.

Object name:
Object names are part of the ACPI Name Space. There is a set of rules for naming objects.

OSPM:
OS-Directed Power Management is a model of power (and system) management in which the OS plays a
central role and uses global information to optimize system behavior for the task at hand.

Package:
A set of objects.
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Persistent System Description Table:
Persistent System Description Tables are Definition Blocks, similar to Secondary System Description
Tables, except a Persistent System Description Table can be saved by the OS and automatically loaded at
every boot.

Power Button:
A user push button that switches the system from the sleeping/soft off state to the working state, and signals
the OS to transition to a sleeping/soft off state from the working state.

Power Management:
Mechanisms in software and hardware to minimize system power consumption, manage system thermal
limits, and maximize system battery life. Power management involves tradeoffs among system speed, noise,
battery life, processing speed, and AC power consumption. Power management is required for some system
functions, such as appliance (e.g. answering machine, furnace control) operations.

Power Resources:
Power resources are resources (for example, power planes and clock sources) that a device requires to
operate in a given power state.

Power Sources:
The battery and AC adapter that supply power to a platform.

P-Code:
P-code is a kind of simple “virtual machine language” that ACPI uses to describe control methods. Its
principal advantages are that it is portable, compact, and powerful. There are many kinds of p-code; ACPI
defines its own for reasons of simplicity. The ACPI specification defines an ACPI Source Language (ASL)
and an ACPI Machine Language (AML). Control methods are written in ASL, for which there is a relatively
simple specification. A compiler converts the ASL form of the p-code to the AML form. The ACPI-
compatible OS contains a p-code interpreter for the AML form of the language.

Register Grouping:
A register grouping consists of two register blocks (it has two pointers to two different blocks of registers).
The fixed-position bits within a register grouping can be split between the two register blocks. This allows
the bits within a register grouping to be split between two chips.

Reserved Bits:
Some unused bits in ACPI hardware registers are designated as “Reserved” in the ACPI specification. For
future extensibility, hardware register reserved bits always return zero, and data writes to them have no side
affects.  ACPI drivers are designed such that they will write zeros to all reserved bits in enable and status
registers and preserve bits in control registers.

Root System Description Pointer:
An ACPI compatible system must provide a Root System Description Pointer in the systems low address
space. This structure’s only purpose is to provide the physical address of the Root System Description
Table.

Root System Description Table:
The Root System Description Table starts with the signature ‘RSDT,’ followed by an array of physical
pointers to the other System Description Tables that provide various information on other standards that are
defined on the current system. The OS locates that Root System Description Table by following the pointer
in the Root System Description Pointer structure.

Secondary System Description Table:
Secondary System Description Tables are a continuation of the Differentiated System Description Table.
Multiple Secondary System Description Tables can be used as part of a platform description. After the
Differentiated System Description Table is loaded into ACPI name space, each secondary description table
with a unique OEM Table ID is loaded. This allows the OEM to provide the base support in one table,
while adding smaller system options in other tables.  Note: Additional tables can only add data, they cannot
overwrite data from previous tables.
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Sleep Button:
A user push button that switches the system from the sleeping/soft off state to the working state, and signals
the OS to transition to a sleeping state from the working state.

Smart Battery Subsystem:
A battery subsystem that conforms to the following specifications: --battery, charger, selector list—and the
additional ACPI requirements.

Smart Battery Table:
An ACPI table used on platforms that have a Smart Battery Subsystem. This table indicates the energy
levels trip points that the platform requires for placing the system into different sleeping states and
suggested energy levels for warning the user to transition the platform into a sleeping state.

SMBus:
SMBus is a two-wire interface based upon the I²C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration.

SMBus Interface:
ACPI defines a standard hardware and software communications interface between an OS bus driver and an
SMBus Controller via an embedded controller.

System Context:
The volatile data in the system that is not saved by a device driver.

System Control Interrupt (SCI):
A system interrupt used by hardware to notify the OS of ACPI events. The SCI is a active low, shareable,
level interrupt.

System Management Interrupt (SMI):
An OS-transparent interrupt generated by interrupt events on legacy systems. By contrast, on ACPI systems,
interrupt events generate an OS-visible interrupt that is shareable (edge-style interrupts will not work).
Hardware platforms that want to support both legacy operating systems  and ACPI systems must support a
way of re-mapping the interrupt events between SMIs and SCIs when switching between ACPI and legacy
models.

Thermal States:
Thermal states represent different operating environment temperatures within thermal zones of a system. A
system can have one or more thermal zones; each thermal zone is the volume of space around a particular
temperature sensing device. The transitions from one thermal state to another are marked by trip points,
which are implemented to generate a System Control Interrupt (SCI) when the temperature in a thermal
zone moves above or below the trip point temperature.

2.2 Global System State Definitions
Global system states (Gx states) apply to the entire system and are visible to the user.
Global system states are defined by six principal criteria:
• Does application software run?
• What is the latency from external events to application response?
• What is the power consumption?
• Is an OS reboot required to return to a working state?
• Is it safe to disassemble the computer?
• Can the state be entered and exited electronically?

Following is a list of the system states:

G3 - Mechanical Off:
A computer state that is entered and left by a mechanical means (e.g. turning off the system’s power through
the movement of a large red switch). This operating mode is required by various government agencies and
countries. It is implied by the entry of this off state through a mechanical means that the no electrical current
is running through the circuitry and it can be worked on without damaging the hardware or endangering the
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service personnel. The OS must be restarted to return to the Working state. No hardware context is retained.
Except for the real time clock, power consumption is zero.

G2/S5 - Soft Off:
A computer state where the computer consumes a minimal amount of power. No user mode or system mode
code is run. This state requires a large latency in order to return to the Working state. The system’s context
will not be preserved by the hardware. The system must be restarted to return to the Working state. It is not
safe to disassemble the machine.

G1 - Sleeping:
A computer state where the computer consumes a small amount of power, user mode threads are not being
executed, and the system “appears” to be off (from an end user’s perspective, the display is off, etc.).
Latency for returning to the Working state varies on the wakeup environment selected prior to entry of this
state (for example, should the system answer phone calls, etc.). Work can be resumed without rebooting the
OS because large elements of system context are saved by the hardware and the rest by system software. It
is not safe to disassemble the machine in this state.

G0 - Working:
A computer state where the system dispatches user mode (application) threads and they execute. In this
state, devices (peripherals) are dynamically having their power state changed. The user will be able to select
(through some user interface) various performance/power characteristics of the system to have the software
optimize for performance or battery life. The system responds to external events in real time. It is not safe to
disassemble the machine in this state.

S4 - Non-Volatile Sleep:

S4 Non-Volatile Sleep (NVS) is a special global system state that allows system context to be saved and
restored (relatively slowly) when power is lost to the motherboard. If the system has been commanded to
enter S4, the OS will write all system context to a non-volatile storage file and leave appropriate context
markers. The machine will then enter the S4 state. When the system leaves the Soft Off or Mechanical Off
state, transitioning to Working (G0) and restarting the OS, a restore from a NVS file can occur. This will
only happen if a valid NVS data set is found, certain aspects of the configuration of the machine has not
changed, and the user has not manually aborted the restore. If all these conditions are met, as part of the OS
restarting it will reload the system context and activate it. The net effect for the user is what looks like a
resume from a Sleeping (G1) state (albeit slower). The aspects of the machine configuration that must not
change include, but are not limited to, disk layout and memory size. It might be possible for the user to
swap a PC Card or a Device Bay device, however.

Note that for the machine to transition directly from the Soft Off or Sleeping states to S4, the system context
must be written to non-volatile storage by the hardware; entering the Working state first so the OS or BIOS
can save the system context takes too long from the user’s point of view. The transition from Mechanical
Off to S4 is likely to be done when the user is not there to see it.

Because the S4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table 2-1  Summary of Global Power States

Global System
State

Software
Runs

Latency Power
Consumption

OS restart
required

Safe to
disassemble
computer

Exit state
electronically

G0 - Working Yes 0 Large No No Yes
G1 - Sleeping No >0, varies

with sleep
state.

Smaller No No Yes

G2/S5 - Soft Off No Long Very near 0 Yes No Yes
G3 - Mechanical Off No Long RTC battery Yes Yes No
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Note that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” This implies that a
platform designed to give the user the appearance of “instant-on,” similar to a home appliance device, will use
the G0 and G1 states almost exclusively (the G3 state may be used for moving the machine or repairing it).

2.3 Device Power State Definitions
Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as a whole is in the Working state.

Device states apply to any device on any bus. They are generally defined in terms of four principal criteria:
• Power consumption - how much power the device uses.
• Device context  - how much of the context of the device is retained by the hardware. The OS is responsible

for restoring any lost device context (this may be done by resetting the device).
• Device driver - what the device driver must do to restore the device to full on.
• Restore time - how long it takes to restore the device to full on.

The device power states are defined below. These states are defined very generically here. Many devices do not
have all four power states defined. Devices may be capable of several different low power modes, but if there is
no user-perceptible difference between the modes only the lowest power mode will be used. The Device Class
Power Management Specifications, which are separate documents from this specification, describe which of
these power states are defined for a given type (class) of device and define the specific details of each power
state for that device class. For a list of the available Device Class Power Management Specifications, see
section 1.10.

D3 - Off:
Power has been fully removed from the device. The device context is lost when this state is entered, so the
OS software will reinitialize the device when powering it back on. Since device context and power are lost,
devices in this state do not decode their addresses lines. Devices in this state have the longest restore times.
All classes of devices define this state.

D2:
The meaning of the D2 Device State is defined by each class of device; it may not be defined by many
classes of devices. In general, D2 is expected to save more power and preserve less device context than D1
or D0. Buses in D2 may cause the device to loose some context (i.e., by reducing power on the bus, thus
forcing the device to turn off some of its functions).

D1:
The meaning of the D1 Device State is defined by each class of device; it may not be defined by many
classes of devices. In general, D1 is expected to save less power and preserve more device context than D2.

D0 - Fully-On:
This state is assumed to be the highest level of power consumption. The device is completely active and
responsive, and is expected to remember all relevant context continuously.

Table 2-2  Summary of Device Power States

Device State Power
Consumption

Device Context
Retained

Driver Restoration

D0 - Fully-
On

As needed for
operation.

All None

D1 D0>D1>D2>D3 >D2 <D2
D2 D0>D1>D2>D3 <D1 >D1
D3 - Off 0 None Full init and load

Note: Devices often have different power modes within a given state. Devices can use these modes as long as
they can automatically switch between these modes transparently from the software, without violating the rules
for the current Dx state the device is in. Low power modes that affect performance (i.e., low speed modes) or
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that are not transparent to software cannot be done automatically in hardware; the device driver must issue
commands to use these modes.

2.4 Sleeping State Definitions
Sleeping states (Sx states) are types of sleeping states within the global sleeping state, G1. The Sx states are
briefly defined below. For a detailed definition of the system behavior within each Sx state, see section 7.5.2.
For a detailed definition of the transitions between each of the Sx states, see section 9.1.

S1 Sleeping State:
The S1 sleeping state is a low wake-up latency sleeping state. In this state, no system context is lost (CPU
or chip set) and hardware maintains all system context.

S2 Sleeping State
The S2 sleeping state is a low wake-up latency sleeping state. This state is similar to the S1 sleeping state
except the CPU and system cache context is lost (the OS is responsible for maintaining the caches and CPU
context). Control starts from the processor’s reset vector after the wake-up event.

S3 Sleeping State:
The S3 sleeping state is a low wake-up latency sleeping state where all system context is lost except system
memory. CPU, cache, and chip set context are lost in this state. Hardware maintains memory context and
restores some CPU and L2 configuration context. Control starts from the processor’s reset vector after the
wake-up event.

S4 Sleeping State:
The S4 sleeping state is the lowest power, longest wake-up latency sleeping state supported by ACPI. In
order to reduce power to a minimum, it is assumed that the hardware platform has powered off all devices.
Platform context is maintained.

S5 Soft Off State:
The S5 state is similar to the S4 state except the OS does not save any context nor enable any devices to
wake the system. The system is in the “soft” off state and requires a complete boot when awakened.
Software uses a different state value to distinguish between the S5 state and the S4 state to allow for initial
boot operations within the BIOS to distinguish whether or not the boot is going to wake from a saved
memory image.

2.5 Processor Power State Definitions
Processor power states (Cx states) are processor power consumption and thermal management states within the
global working state, G0. The Cx states are briefly defined below. For a more detailed definition of each Cx
state from the software perspective, see section 8.2. For a detailed definition of the Cx states from the hardware
perspective, see section 4.7.1.12.

C0 Processor Power State:
While the processor is in this state, it executes instructions.

C1 Processor Power State
This processor power state has the lowest latency, The hardware latency on this state is required to be low
enough that the operating software does not consider the latency aspect of the state when deciding whether
to use it. Aside from putting the processor in a non-executing power state, this state has no other software-
visible effects.

C2 Processor Power State:
The C2 state offers improved power savings over the C1 state. The worst-case hardware latency for this
state is declared in the FACP Table and the operating software can use this information to determine when
the C1 state should be used instead of the C2 state. Aside from putting the processor in a non-executing
power state, this state has no other software-visible effects.

C3 Processor Power State:



Advanced Configuration and Power Management Interface Specification 2-16

Intel/Microsoft/Toshiba

The C3 state offers improved power savings of the C1 and C2 states. The worst-case hardware latency for
this state is declared in the FACP Table, and the operating software can use this information to determine
when the C2 state should be used instead of the C3 state. While in the C3 state, the processor’s caches
maintain state but ignore any snoops. The operating software is responsible for ensuring that the caches
maintain coherency.
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3. Overview
The ACPI interface gives the operating system (OS) direct control over the power management and Plug and
Play functions of a computer. When it starts, the ACPI OS takes over these functions from legacy BIOS
interfaces such as the APM BIOS and the PNPBIOS. Having done this, the OS is responsible for handling Plug
and Play events as well as controlling power and thermal states based on user settings and application requests.
ACPI provides low-level controls so the OS can perform these functions. The functional areas covered by the
ACPI specification are:
• System power management - ACPI defines mechanisms for putting the computer as a whole in and out of

system sleeping states. It also provides a general mechanism for any device to wake the computer.
• Device power management - ACPI tables describe motherboard devices, their power states, the power

planes the devices are connected to, and controls for putting devices into different power states. This
enables the OS to put devices into low-power states based on application usage.

• Processor power management - While the OS is idle but not sleeping, it will use commands described by
ACPI to put processors in low-power states.

• Plug and Play - ACPI specifies information used to enumerate and configure motherboard devices. This
information is arranged hierarchically so when events such as docking and undocking take place, the OS has
precise, a priori knowledge of which devices are affected by the event.

• System Events - ACPI provides a general event mechanism that can be used for system events such as
thermal events, power management events, docking, device insertion and removal, etc.  This mechanism is
very flexible in that it does not define specifically how events are routed to the core logic chipset.

• Battery management - Battery management policy moves from the APM BIOS to the ACPI OS. The OS
determines the Low battery and battery warning points, and the OS also calculates the battery remaining
capacity and battery remaining life. An ACPI-compatible battery device needs either a Smart Battery
subsystem interface, which is controlled by the OS directly through the embedded controller interface, or a
Control Method Battery (CMBatt) interface. A CMBatt interface is completely defined by AML control
methods, allowing an OEM to choose any type of the battery and any kind of communication interface
supported by ACPI.

• Thermal management - Since the OS controls the power states of devices and processors, ACPI also
addresses system thermal management. It provides a simple, scaleable model that allows OEMs to define
thermal zones, thermal indicators, and methods for cooling thermal zones.

• Embedded Controller - ACPI defines a standard hardware and software communications interface
between an OS bus enumerator and an embedded controller. This allows any OS to provide a standard bus
enumerator that can directly communicate with an embedded controller in the system, thus allowing other
drivers within the system to communicate with and use the resources of system embedded controllers. This
in turn enables the OEM to provide platform features that the OS and applications can use.

• System Management Bus Controller - ACPI defines a standard hardware and software communications
interface between an OS bus driver and an SMBus Controller. This allows any OS to provide a standard bus
driver that can directly communicate with SMBus Devices in the system. This in turn enables the OEM to
provide platform features that the OS and applications can use.

3.1 System Power Management
Under OS-directed power management (OSPM), the operating system directs all system and device power state
transitions. Employing user preferences and knowledge of how devices are being used by applications, the OS
puts devices in and out of low-power states. Devices that are not being used can be turned off.  Similarly, the OS
uses information from applications and user settings to put the system as a whole into a low- power state.  The
OS uses ACPI to control power state transitions in hardware.
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3.2 Power States
From a user-visible level, the system can be thought of as being in one of the states in the following diagram:
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Figure 3-1   Global System Power States and Transitions

(See section 2.2 for detailed definitions of these states)

In general use, computers alternate between the Working and Sleeping states. In the Working state, the computer
is used to do some work. User-mode application threads are dispatched and running. Individual devices can be
in low-power (Dx) states and processors can be in low-power (Cx) states if they are not being used. Any device
the system turns off because it is not actively in use can be turned on with short latency. (What “short” means
depends on the device. An LCD display needs to come on in sub-second times, while it is generally acceptable
to wait a few seconds for a printer to wake up.)

The net effect of this is that the entire machine is functional in the Working state. Various Working sub-states
differ in speed of computation, power used, heat produced, and noise produced. Tuning within the Working
state is largely about tradeoffs between speed, power, heat, and noise.

When the computer is idle or the user has pressed the power button, the OS will put the computer into one of the
sleeping (Sx) states. No user-visible computation occurs in a sleeping state. The sleeping sub-states differ in
what events can arouse the system to a Working state, and how long this takes. When the machine must awaken
to all possible events and/or do so very quickly, it can enter only the sub-states that achieve a partial reduction of
system power consumption. However, if the only event of interest is a user pushing on a switch and a latency of
minutes is allowed, the OS could save all system context into a non-volatile storage (NVS) file and transition the
hardware into a Soft Off state. In this state, the machine draws almost zero power and retains system context for
an arbitrary period of time (years or decades if needed).

The other states are used less often. Computers that support legacy BIOS power management interfaces boot in
the Legacy state and transition to the Working state when an ACPI OS loads. A system without legacy support
(e.g., a RISC system) transitions directly from the Mechanical Off state to the Working state. Users put
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computers into the Mechanical Off state by flipping the computer’s mechanical switch or by unplugging the
computer.

3.2.1 New Meanings for the Power Button
In legacy systems, the power button typically either forces the machine to Soft Off or Mechanical Off or, on a
laptop, forces it to some sleeping state. No allowance is made for user policy (such as the user wants the
machine to “come on” in less than 1 second with all context as it was when the user turned the machine “off”),
system alert functions (such as the system being used as an answering machine or fax machine), or application
function (such as saving a user file).

In an OSPM system, there could be two switches. One is to transition the system to the Mechanical Off state. A
mechanism to stop current flow is required for legal reasons in some jurisdictions (for example, in some
European countries). The other is the “main” power button. This will be in some obvious place (for example,
beside the keyboard on a laptop). Unlike today’s on/off button, all it does is send a request to the system. What
the system does with this request depends on policy issues derived from user preferences, user function requests,
and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1 Mobile PC
Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/ACPI will allow
enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are thermal management (see section 12)
and the embedded controller interface (see section 13).

3.2.2.2 Desktop PCs
Power-managed desktops will really be of two types, though the first type will migrate to the second over time.
• Ordinary “Green PC” - Here, new appliance functions are not the issue. The machine is really only used for

productivity computations. At least initially, such machines can get by with very minimal function. In
particular, they need the normal ACPI timers and controls, but don’t need to support elaborate sleeping
states, etc. They, however, do need to allow the OS to put as many of their devices/resources as possible
into device standby and device off states, as independently as possible (to allow for maximum compute
speed with minimum power wasted on unused devices). Such PCs will also need to support wake-up from
the Soft-Off state by means of a timer, because this allows administrators to force them to turn on just
before people are to show up for work.

• Home PC - Computers are moving into home environments where they are used in entertainment centers
and to perform tasks like answering the phone. A home PC needs all of the functionality of the Ordinary
Green PC. In fact, it has all of the ACPI power functionality of a laptop except for docking and lid events
(and need not have any legacy power management).

3.2.2.3 Multiprocessor and Server PCs
Perhaps surprisingly, server machines will often get the largest absolute power savings. Why? Because they
have the largest hardware configurations, and it’s not practical for somebody to hit the off switch when they
leave at night.
• Day Mode - In day mode, servers will get power managed much like a corporate Ordinary Green PC,

staying in the Working state all the time, but putting unused devices into low power states whenever
possible. Because servers can be very large and have, for example, many disk spindles, power management
can result in large savings. OS-driven power management allows careful tuning of when to do this, thus
making it workable.

• Night Mode - In night mode, servers look like Home PCs. They sleep as deeply as they can sleep and still
be able to wake up and answer service requests coming in over the network, phone links, etc, within
specified latencies. So, for example, a print server might go into deep sleep until it  receives a print job at 3
A.M., at which point it wakes up in perhaps less than 30 seconds, prints the job, and then goes back to
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sleep. If the print request comes over the LAN, then this scenario depends on an intelligent LAN adapter
that can wake up the system in response to an interesting received packet.

3.3 Device Power Management
This section describes ACPI-compatible device power management. The ACPI device power states are
introduced, the controls and information an ACPI-compatible OS needs to perform device power management
are discussed, the Wakeup operation devices use the wake the computer from a sleeping state is described, and
an example of ACPI-compatible device management, using a modem, is given.

3.3.1 Power Management Standards
To manage power of all the devices in the system, the OS needs standard methods for sending commands to a
device. These standards define the operations used to manage power of devices on a particular bus and the
power states that devices can be put into. Defining these standards for each bus creates a base-line level of
power management support the OS can utilize. IHVs do not have to spend extra time writing software to manage
power of their hardware; because simply adhering to the standard gains them direct OS support. For OS
vendors, the bus standards allow the power management code to be centralized in each bus driver.  Finally, bus-
driven power management allows the OS to track the states of all devices on a given bus. When all the devices
are in a given state (e.g. D3 - off), the OS can put the entire bus into the power supply mode appropriate for that
state (e.g. D3 - off).

Bus-level power management specifications are being written for the following busses:
• PCI
• CardBus
• USB
• IEEE 1394

3.3.2 Device Power States
To unify nomenclature and provide consistent behavior across devices, standard definitions are used for the
power states of devices. Generally, these states are defined in terms of two criteria:
• Power consumption - how much power the device uses.
• Device context  - how much of the context of the device is retained by the hardware. The OS is responsible

for restoring any lost device context (this can be done by resetting the device).
• Device driver - what the device driver must do to restore the device to full on.
• Restore latency - how long it takes to restore the device to full on.

More specifically, power management specifications for each class of device (e.g., modem, network adapter,
hard disk, etc) more precisely define the power states and power policy for the class. See section 2.3 for the
detailed description of the four general device power states (D0-D3).

3.3.3 Device Power State Definitions
The device power state definitions are device independent, but classes of devices on a bus must support some
consistent set of power-related characteristics. For example, when the bus-specific mechanism to set the device
power state to a given level is invoked, the actions a device might take and the specific sorts of behaviors the OS
can assume while the device is in that state will vary from device type to device type. For a fully integrated
device power management system, these class-specific power characteristics must also be standardized:

Device Power State Characteristics. Each class of device has a standard definition of target power
consumption levels, state-change latencies, and context loss.
Minimum Device Power Capabilities. Each class of device has a minimum standard set of power
capabilities.
Device Functional Characteristics. Each class of device has a standard definition of what subset of device
functionality or features is available in each power state (for example, the net card can receive, but cannot
transmit; the sound card is fully functional except that the power amps are off, etc.).
Device Wake-Up Characteristics. Each class of device has a standard definition of its wake-up policy.
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Microsoft’s Device Class Power Management specifications define these power state characteristics for each
class of device.

3.4 Controlling Device Power
ACPI provides the OS the controls and information needed to perform device power management.  ACPI
describes the capabilities of all the devices it controls to the OS. It also gives the OS the control methods used to
set the power state or get the power status for each device. Finally, it has a general scheme for devices to wake
up the machine.

Note: Some devices on the main board are enumerated by other busses. For example, PCI devices are reported
through the standard PCI enumeration mechanisms. The ACPI table lists legacy devices that cannot be reported
through their own bus specification, the root of each bus in the system, and devices that have additional power
management or configuration options not covered by their own bus specification. Power management of these
devices is handled through their own bus specification (in this case, PCI). All other devices are handled through
ACPI.

For more detailed information see section 7.

3.4.1 Getting Device Power Capabilities
As the OS enumerates devices in the system, it gets information about the power management features that the
device supports.  The Differentiated Definition Block given to the OS by the BIOS describes every device
handled by ACPI.  This description contains the following information:
• A description of what power resources (power planes and clock sources) the device needs in each power

state that the device supports. For example, a device might need a high power bus and a clock in the D0
state but only a low power bus and no clock in the D2 state.

• A description of what power resources a device needs in order to wake the machine (or none to indicate that
the device does not support wakeup). The OS can use this information to infer what device and system
power states the device can support wakeup from.

• The optional control method the OS can use to set the power state of the device and to get and set resources.

In addition to describing the devices handled by ACPI, the table lists the power planes and clock sources
themselves and the control methods for turning them on and off. For detailed information, see section 7.

3.4.2 Setting Device Power States
The Set Power State operation is used by the OS to put a device into one of the four power states.

When a device is put in a lower power state, it configures itself to draw as little power from the bus as possible.
The OS will track the state of all devices on the bus, and will put the bus into the best possible power state based
on the current device requirements on that bus. For example, if all devices on a bus are in the D3 state, the OS
will send a command to the bus control chip set to remove power from the bus (thus putting the bus itself in the
D3 state). Or if a particular bus supports a low power supply state, the OS will put the bus into that state if all
devices were in the D1 or D2 state. Whatever power state a device is put into, the OS must be able to issue a Set
Power State command to can resume the device.  Note: The device does not need to have power to do this. The
OS must turn on power to the device before it can send any commands to the device.

The Set Power State operation is also used by the OS to enable power management features like wakeup
(described in section 7).

When a device is to be set in a particular power state using the ACPI interface, the OS first decides which power
resources will be used and which can be turned off. The OS will track all the devices on a given power resource.
When all the devices on a resource have been turned off, the OS will turn off that power resource by running a
control method. If a power resource is turned off and one of the devices on that resource needs to be turned on,
the OS will first turn on the power resource using a control method and then signal the device to turn on. The
time that the OS must wait for the power resource to stabilize after turning it on or off is described in the
description table. The OS uses the time base provided by the Power Management Timer to measure these time
intervals.
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Once the power resources have been switched, the OS executes the appropriate control method to put the device
in that power state. Note that this might not mean that power is removed from the device. If other active devices
are sharing a power resource, the power resources will remain on.

3.4.3 Getting Device Power Status
The Get Power Status operation is used by the OS to determine the current power configuration (states and
features), as well as the status of any batteries supported by the device. The device can signal a System Control
Interrupt (SCI) to inform the OS of changes in power status. For example, a device can trigger an interrupt to
inform the OS that the battery has reached low power level.

Devices use the ACPI event model (see below) to signal power status changes (battery status changes, for
example), the ACPI chip set signals the OS via the SCI interrupt. An SCI interrupt status bit is set to indicate the
event to the OS.  The OS  runs the control method associated with the event.  This control method signals to the
OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information, and batteries
that support the Intel/Duracell Smart Battery Specification. For batteries that report only basic battery status
information (such as total capacity and remaining capacity), the OS uses control methods from the battery’s
description table to read this information. To read status information for Smart Batteries, the OS can use a
standard Smart Battery driver that directly interfaces to Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the Computer
The Wakeup operation is used by devices to wake the computer from a sleeping power state. This operation
must not depend on the CPU because the CPU will not be powered. When it puts the computer in a sleeping
power state, the OS will enable wakeup on those devices that the user’s applications need to wake the machine.
The OS will also make sure any bridges between the device and the core logic are in the lowest power state in
which they can still forward the wakeup signal.  When a device with wakeup enabled decides to wake the
machine, it sends the defined signal on its bus. Bus bridges must forward this signal to upstream bridges using
the appropriate signal for that bus. Thus, the signal eventually reaches the core chip set (e.g. an ACPI chip set),
which in turn wakes the machine.

Before putting the machine in a sleeping power state, the OS determines which devices are needed to wake the
machine based on application requests, and then enables wakeup on those devices. The OS enables the wakeup
feature on devices by setting that device’s SCI Enable bit. The location of this bit is listed in the device’s entry
in the description table. Only devices that have their wakeup feature enabled can wake the machine. The OS will
keep track of what power states the wakeup devices are capable of and will keep the machine in a power state in
which the wakeup can still wake the machine1 (based on capabilities reported in the Description Table).

When the computer is in the Sleeping power state and a wakeup device decides to wake the machine, it signals
to the ACPI chip set. The SCI status bit corresponding to the device waking the machine will be set, and the
ACPI chip set will resume the machine. Once the OS is up and running again, it will clear the bit and handle the
event that caused the wakeup. The control method for this event then uses the Notify command to tell the OS
which device caused the wakeup.

3.4.5 Example: Modem Device Power Management
To illustrate how these power management methods function in ACPI, consider an integrated modem. (This
example is greatly simplified for the purposes of this discussion). The power states of a modem are defined as
follows (this is an excerpt from the Modem Device Class Power Management Specification):

D0 - Modem controller on
Phone interface on
Speaker on

                                                          
1 Some OS policies may require the OS to put the machine into a global system state for which the device can
no longer wake the system.  Such as a very low battery situation.
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Can be on hook or off hook
Can be waiting for answer

D1 - Modem controller in low power mode (context retained by device)
Phone interface powered by phone line or in low power mode
Speaker off
Must be on hook

D2 - Same as D3
D3 - Modem controller off (context lost)

Phone interface powered by phone line or off
Speaker off
On hook

The power policy for the modem are defined as follows:

D3 Æ D0 COM port opened
D0,D1 Æ D3 COM port closed
D0 Æ D1 Modem put in answer mode
D1 Æ D0 Application requests dial or the phone rings while the modem is in answer mode

The wakeup policy for the modem is very simple: when the phone rings and wakeup is enabled, wake the
machine.

Based on that information, the modem and the COM port it is attached to can be implemented in hardware as
shown in Figure 3-2. This is just an example for illustrating features of ACPI.  This example is not intended to
describe how OEMs should build hardware.
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Figure 3-2   Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has some isolation logic so that the part is isolated when
power is removed from it. Isolation logic controls are implemented as power resources in the ACPI
Differentiated Description Block so that devices are isolated as power planes are sequenced off.

3.4.5.1 Getting the Modem’s Capabilities
The OS determines the capabilities of this modem when it enumerates the modem by reading the modem’s entry
in the Differentiated Definition Block. In this case, the entry for the modem would report:

The device supports D0, D1, and D3:
D0 requires PWR1 and PWR2 as power resources
D1 requires PWR1 as a power resource
(D3 implicitly requires no power resources)
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To wake the machine, the modem needs no power resources (implying it can wake the machine from
D0, D1, and D3)
Control methods for setting power state and resources

3.4.5.2 Setting the Modem’s Power State
While the OS is running (G0 state), it will switch the modem to different power states according to the power
policy defined for modems.

When an application opens the COM port, the OS will turn on the modem by putting it in the D0 state. Then if
the application puts the modem in answer mode, the OS will put the modem in the D1 state to wait for the call.
To make this state transition, the ACPI first checks to see what power resources are no longer needed. In this
case, PWR2 is not needed. Then it checks to make sure no other device in the system requires the use of the
PWR2 power resource. If the resource is no longer needed, the ACPI driver uses the _OFF control method
associated with that power resource in the Differentiated Definition Block to turn off the PWR2 power plane.
This control method sends the appropriate commands to the core chip set to stop asserting the PWR2_EN line.
Then, the ACPI driver runs a control method (_PS1) provided in the modem’s entry to put the device in the D1
state. This control method asserts the MDM_D1 signal that tells the modem controller to go into a low power
mode.

The ACPI driver does not always turn off power resources when a given device is put into a lower power state.
For example, assume that the PWR1 power plane also powers an LPT port that is active. Suppose the user
terminates the modem application causing the COM port to be closed, therefore causing the modem to be shut
off (state D3). As always, the ACPI driver checks to see which power resources are no longer needed. Because
the LPT port is still active, PWR1 is in use. The ACPI driver will not turn off the PWR1 resource. It will
continue the state transition process by running the modem’s control method to switch the device to the D3
power state. The control method will cause the MDM_D3 line to be asserted. The modem controller now turns
off all its major functions so that it draws little power, if any, from the PWR1 line. Because the COM port is
now closed, the same sequence of events would take place to put it into the D3 state. Note that these registers
might not be in the device itself.  For example, the control method could read the register that controls
MDM_D3.

3.4.6 Getting the Modem’s Power Status
Being an integrated modem, the device has no batteries. The only power status information for the device is the
power state of the modem. To determine the modem’s current power state (D0-D3), the ACPI driver runs a
control method (_PSC) supplied in the modem’s entry in the Differentiated Definition Block. This control
method reads from whatever registers are necessary to determine the modem’s power state.

3.4.6.1 Waking the Computer

As indicated in the capabilities, this modem can wake the machine from any device power state. Before putting
the computer in a sleep state, the OS will enable wakeup on any devices that applications have requested to
wake the machine. Then, it will choose the lowest sleeping state that can still provide the power resources
necessary to allow all enabled wakeup devices to wake the machine. Next, the OS puts each of those devices in
the appropriate power state, and puts all other devices in the D3 state. In this case, the OS would put the modem
in the D3 state because it supports wake up from that state. Finally, the OS saves a resume vector and puts the
machine to sleep through an ACPI register.

Waking the computer via modem starts with the modem’s phone interface asserting its ring indicate (RI) line
when it detects a ring on the phone line. This line is routed  to the core chip set to generate a wake-up event. The
chip set then awakens the system and the hardware will eventually pass control back to the OS (the waking
mechanism differs depending on the sleeping state). Once the OS is running, it will put the device in the D0 state
and begin handling interrupts from the modem to process the event.
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3.5 Processor Power Management
To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and C3) when
the OS is idle. In these low-power states, the CPU does not run any instructions, and wakes when an interrupt,
such as the pre-empt interrupt, occurs.

The OS determines how much time is being spent in its idle loop by reading the ACPI Power Management
Timer. This timer runs at a known, fixed frequency and allows the OS to precisely determine idle time.
Depending on this idle time estimate, the OS will put the CPU into different quality lower power states (which
vary in power and latency) when it enters its idle loop.

The CPU states are defined in detail in section 8.

3.6 Plug and Play
In addition to power management, ACPI provides controls and information so that the OS can direct Plug and
Play on the motherboard.  The Differentiated Description Table describes the motherboard devices. The OS
enumerates motherboard devices simply by reading through the Differentiated Description Table looking for
devices with hardware IDs.

Each device enumerated by ACPI includes control methods that report the hardware resources the device could
occupy and those that are currently used, and a control method for configuring those resources. The information
is used by the Plug and Play system to configure the devices.

ACPI is used only to enumerate and configure motherboard devices that do not have other hardware standards
for enumeration and configuration. For example, PCI devices on the motherboard must not be enumerated by
ACPI, therefore Plug and Play information for these devices is not included in the Differentiated Description
Table.  However, power management information for these devices can still appear in the table if the devices’
power management is to be controlled through ACPI.

Note: When preparing to boot a computer, the BIOS only needs to configure boot devices. This includes boot
devices described in the ACPI description tables as well as devices that are controlled through other standards.

3.6.1 Example: Configuring the Modem
Returning to the modem device example above, the OS will find the modem and load a driver for it when the OS
finds it in the Differentiated Description Table. This table will have control methods that tell the OS the
following information:
• The device can use IRQ 3, I/O 3F8-3FF or IRQ 4, I/O 2E8-2EF
• The device is currently using IRQ 3, I/O 3F8-3FF

The OS configures the modem’s hardware resources using Plug and Play algorithms. It chooses one of the
supported configurations that does not conflict with any other devices. Then, the ACPI driver configures the
device for those resources by running a control method supplied in the modem’s section of the Differentiated
Definition Block. This control method will write to any I/O ports or memory addresses necessary to configure
the device to the given resources.

3.7 System Events
ACPI includes a general event model used for Plug and Play, Thermal, and Power Management events. There
are two registers that make up the event model: an event status register, and an event enable register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the corresponding bit
in the enable register is set, the core logic will assert the SCI to signal the OS. When the OS receives this
interrupt, it will run the control methods corresponding to any bits set in the event status register. These control
methods use AML commands to tell the OS what event occurred.

For example, assume a machine has all of its Plug and Play, Thermal, and Power Management events connected
to the same pin in the core logic. The event status and event enable registers would only have one bit each: the
bit corresponding to the event pin.
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When the computer is docked, the core logic would set the status bit and fire the SCI. The OS, seeing the status
bit set, runs the control method for that bit. The control method checks the hardware and determines the event
was a docking event (for example). It then signals to the OS that a docking event has occurred, and can tell the
OS specifically where in the device hierarchy the new devices will appear.

Since the event model registers are generalized, they can describe many different platform implementations.
The single pin model above is just one example.  Another design might have Plug and Play, Thermal, and Power
Management events wired to three different pins so there would be three status bits (and three enable bits). Yet
another design might have every individual event wired to its own pin and status bit. This design, at the opposite
extreme from the single pin design, allows very complex hardware, yet very simple control methods.  Countless
variations in wiring up events are possible.

3.8 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. The OS determines the
low battery point and battery warning point. The OS also calculates the remaining battery capacity and
remaining battery life.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a Control Method
Battery (CMBatt) interface.
• Smart Battery is controlled by the OS directly through the embedded controller (EC). For more information

about the ACPI Embedded Controller SMBus interface, see section 13.9.
• CMBatt  is completely accessed by AML code control methods, allowing the OEM to choose any type of

battery and any kind of communication interface supported by ACPI. For more information about battery
device control methods, see section 11.2.2.

This section describes how a CMBatt interface works and what kind of AML code interface is needed .

3.8.1 CMBatt Diagram
CMBatt  is accessed by an AML code interface so a system hardware designer can choose any communication
interface at the hardware level. One example is shown in Figure 3-3. The battery has built-in information and
can communicate with embedded controller (EC) using the I2C interface. The AML code interface returns the
battery information stored in the RAM of the EC. The OS can set the battery trip point at which an SCI will be
generated.
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OS
and

Drivers
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Figure 3-3  Control Method Battery Diagram

3.8.2 Battery Events
The AML code that handles an SCI for a battery event notifies the system of the batteries upon which the status
might have changed.
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When a battery device is inserted into the system or removed from the system, the hardware asserts a GP event.
The AML code handler for this event will issue a Notify(, 0x00) on the battery device to initiate the standard
device Plug and Play actions.

When the present state of the battery has changed or when the trip point set by the _BTP control method is
crossed, the hardware will assert a GP event. The AML code handler for this event issues a Notify(,0x80) on the
battery device.

3.8.3 Battery Capacity

CMBatt reports the designed capacity, the latest full-charged capacity, and the present remaining capacity.
Battery remaining capacity decreases during usage, and it also changes depending on the environment.
Therefore, the OS must use latest full-charged capacity to calculates the battery percentage.

A system must use either [mA] or [mW] for the unit of battery information calculation and reporting. Mixing
[mA] and [mW] is not allowed on a system.

CMBatt reports the OEM-designed initial warning capacity and OEM-designed initial low capacity . An ACPI-
compatible OS determines independent warning and low battery capacity based on these initial capacities.

OEM designed init ial capacity for warning
OEM designed init ial capacity for Low

Last Full  charged capacity
Designed Capacity

Present Remaining Capacity

Figure 3-4  Reporting Battery Capacity

3.8.4 Battery Gas Gauge
At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following formula:

Remaining Battery Percentage[%] =
Battery Remaining Capacity [mAh/mWh]

Last Full Charged Capacity [mAh/mWh]
* 100

CMBatt also reports the Present Drain Rate [mA or mW] for calculating the remaining battery life. At the most
basic level, Remaining Battery life is calculated by following formula:

Remainin g  Batter y  Life [h]=
Batter y  Remainin g  Capacit y  [mAh/mWh]
Batter y  Present Rate [mA/mW]

Note that when the battery is a primary battery (a non-rechargeable battery such as an Alkaline-Manganese
battery) and cannot provide accurate information about the battery to use in the calculation of the remaining
battery life, the CMBatt can report the percentage directly to OS. Reporting the “Last Full Charged capacity
=100” and “BatteryPresentRate=0xFFFFFFFF” means that ”Battery remaining capacity” is a battery percentage
and the its value should be in the range 0 through 100 as follows.
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Remaining Battery Percentage[%] =
Battery Remaining Capacity [=0 ~ 100]

Last Full Charged Capacity [=100]
* 100

Remaining Battery Life [h] =
Battery Remaining Capacity [mAh/mWh]

Battery Present Rate [=0xFFFFFFFF]
= unknown

CMBatt have an OEM-designed initial capacity for warning and initial capacity for low. An ACPI-compatible
OS can determine independent warning and low battery capacity values based on the designed warning capacity
and designed low capacity shown in Figure 3-5 and Table 3-1.
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Critical

OEM designed initial capacity  for warning (Minimum)

OEM designed initial capacity for Low (Minimum)

Last Full charged capacity

O/S selects low battery capacity according to the grid

O/S selects low battery warning capacity according to the grid

OEM defined Battery Critical flag

F

E

Figure 3-5  Low Battery and Warning
CMBatt and an ACPI-compatible OS manage the three battery level shown in Table 3-1.

Table 3-1  Low Battery Levels

Level Description
Warning The battery is approaching and is close to the Low level. This is an early warning; the

battery is not yet in the Low capacity.
The OS can determine a built-in low battery warning point that will not fall below the
OEM-defined initial remaining-capacity for warning. The OS will use this warning level
to notify the user via UI.

Low The Battery is low.
The OS determines a  built-in low battery level that will not fall below the OEM-defined
initial remaining-capacity for low. At this level , the OS will transition the system to a
user defined state (i.e., a sleep state , shutdown).
If the remaining capacity is not accurate and hardware detects the low battery before the
remaining capacity reaches the OS-specified low level, CMBatt can  report the
remaining-capacity as same as (or less than) OEM-designed initial capacity to alert the
OS that the battery is low.

Critical Battery is fully discharged and cannot supply any more power to the system. This level
does not mean battery failure. The system cannot use the battery until it has been re-
charged or replaced.
The system reports this condition by setting the “Critical” flag in the Battery State field
of the _BST (battery status) object.  This is an emergency situation because there is not
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Level Description
enough time for a normal shutdown procedure.  Therefore, the OS runs its emergency
shutdown at this point.
Critical battery level is defined by the OEM.
Note: The amount of time taken to complete its emergency shutdown procedure depends
on the OS and the system configuration.

If any battery in a system reaches a critical state (and it is a secondary battery ) and is also discharging (as
reported by the _BST control method ), the OS will initiate an orderly but critical shutdown of the system. If
there are multiple batteries in the system, the OS will continue to run even if one or more batteries reach critical
so long as a critical battery device is not also discharging.

3.9 Thermal Management
ACPI moves the hardware cooling policies from the firmware to the OS.  With the operating software watching
over the system temperature, new cooling decisions can be made based on application load on the CPU as well
as the thermal heuristics of the system. The OS will also be able to gracefully shutdown the computer in case of
high temperature emergencies.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one large
thermal zone, but an OEM can partition the system into several thermal zones if necessary. Figure 3-6 is an
example mobile PC diagram that depicts a standard single thermal zone with a central processor as the thermal-
coupled device. In this example, the whole notebook is covered as one large thermal zone. This notebook uses
one fan for active cooling and the CPU for passive cooling.
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Figure 3-6  Thermal Zone
The following sections are an overview of the thermal control and cooling characteristics of a computer. For
some thermal implementation examples on an ACPI platform, see section 12.4.

3.9.1 Active and Passive Cooling
ACPI defines two cooling methods, Active and Passive:
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• Passive cooling:  OS reduces the power consumption of the processor to reduce the thermal output of the
machine.

• Active cooling:  OS takes a direct action such as turning on a fan.

Cooling method is a user-defined function that can be set in the OS through a control panel. These two cooling
methods are inversely related to each other. Active cooling requires increased power to reduce the heat within
the system while Passive cooling requires reduced power to decrease the temperature. The effect of this
relationship is that Active cooling allows maximum CPU performance, but it creates fan noise, while Passive
cooling reduces system performance, but it is quiet.  (Note:  Exceptions can be made.  For example a battery
charger, although it  reduces the power to reduce heat, can be implemented as an active cooling device.  For
more information, see section 12. The significance of allowing the user to choose energy utilization is most
critical to the operator of a mobile computer where battery charge preservation often has higher priority over
maximum system performance. A mobile PC user is also more likely to be in a locale where quietness of the
system is preferable over CPU performance. With these two cooling methods a PC user will be able to have a
choice of performance versus quietness and some control over the rate of battery drain.

3.9.2 Performance vs. Silence
An ACPI-compatible OS offers a cooling choice to the end user at run-time that allows the user to adjust the rate
of battery discharge between maximum and less than maximum. This flexibility is most important to a mobile
PC user.  For example, if a user is taking notes on her PC in a quiet environment, such as a library or a corporate
meeting, she might want to set the cooling mode to Silence. This will sacrifice CPU speed, but it will turn off the
fan to make the system quiet. Since the user is using the CPU to edit text, high CPU performance is probably not
needed. On the other hand, another user might be in a lab running a graphics-intensive application and will need
to set the cooling mode to Performance to utilize the maximum CPU bandwidth. Either cooling mode will be
activated only when the thermal condition requires it. When the thermal zone is at an optimal temperature level
where it does not warrant any cooling, both modes will run the CPU at maximum speed and keep the fan turned
off.
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Figure 3-7   Active and Passive Policy Settings
To design a balanced thermal implementation, ACPI reserves the _ACx and _PSV objects to handle the two
separate cooling modes. An OEM must choose the temperature value for each object so the OS will initiate the
cooling policies at the desired target temperatures. (The ACPI specification defines Kelvin as the standard for
temperature. All thermal control methods and objects must report temperatures in Kelvin. All figures and
examples in this section of the specification use Celsius for reasons of clarity. ACPI allows Kelvin to be
declared in precision of 1/10th of a degree (e.g, 310.5). Kelvin is expressed as θ/K = T/°C + 273.2.)
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As shown in Figure 3-7, both control methods can return any temperature value that the OEM designates. But
most importantly, the OEM can create each of the Performance and Silence modes by assigning different
temperatures to each control method.  Generally, if _ACx is set lower than _PSV, then it effectively becomes a
Performance cooling mode. Conversely, if _PSV is set lower than _ACx, then it becomes a Silence cooling
mode.

3.9.2.1 Cooling Mode: Performance
Figure 3-8 is an example of a performance-centric cooling  model on an optimally implemented hardware.
Besides setting the _ACx as the initial cooling policy, this system notifies the OS of a temperature change by
raising an SCI every 5 degrees.
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Figure 3-8   Performance Mode Example
This example turns the fan on when the OS receives an SCI at 50 degrees. If for some reason the fan does not
reduce the system temperature, then at 60 degrees the OS will start throttling the CPU while running the fan.  If
the temperature continues to climb, the OS will be notified of a critical temperature at 90 degrees, at which point
it will quickly shutdown the system.

3.9.2.2 Cooling Mode: Silence
Figure 3-9 is an example of a cooling model where quietness is the desired behavior of the system. The _PSV is
set as the initial cooling policy.  In this example, the OS is notified of a temperature change by raising an SCI
every 5 degrees.
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Figure 3-9  Silence Mode Example
This example initiates system cooling by CPU throttling when the OS receives an SCI at 45 degrees. If the
throttling is not enough to reduce the heat, the OS will turn the fan on at 60 degrees while throttling the CPU. If
the temperature continues to climb, the OS will be notified of a critical temperature at 90 degrees, at which point
it will quickly shutdown the system.

3.9.3 Other Thermal Implementations
The ACPI thermal control model allows flexibility in thermal event design. An OEM that needs a less elaborate
thermal implementation might consider some other design. For example, Figure 3-10 shows three other
possibilities for implementing a thermal feedback design. These are only examples; many other designs are
possible.
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Figure 3-10   Example Thermal Cooling Implementations

3.9.4 Multiple Thermal Zones
The basic thermal management model defines one thermal zone, but in order to provide extended thermal
control in a complex system ACPI specifies a multiple thermal zone implementation. Under a multiple thermal
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zone model the OS will independently manage several thermal-coupled devices and a designated thermal zone
for each thermal-coupled device, using Active and/or Passive cooling methods available to each thermal zone.
Each thermal zone can have more than one Passive and Active cooling device. Furthermore, each zone might
have unique or shared cooling resources. In a multiple thermal zone configuration, if one zone reaches a critical
state then the OS must shut down the entire system.
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4. ACPI Hardware Specification
ACPI defines a standard mechanism for an ACPI-compatible OS to communicate to an ACPI-compatible
hardware platform. This section describes the hardware aspects of ACPI.
ACPI defines “hardware” as a programming model and its behavior. ACPI strives to keep much of the existing
legacy programming model the same; however, to meet certain feature goals, designated features conform to a
specific addressing and programming scheme (hardware that falls within this category is referred to as “fixed”).
Although ACPI strives to minimize these changes, hardware engineers should read this section carefully to
understand the changes needed to convert a legacy-only hardware model to an ACPI/Legacy hardware model or
an ACPI-only hardware model.
ACPI classifies hardware into two categories: Fixed or Generic. Hardware that falls within the fixed category
meets the programming and behavior specifications of ACPI. Hardware that falls within the generic category has
a wide degree of flexibility in its implementation.

4.1 Fixed Hardware Programming Model
Because of the changes needed for migrating legacy hardware to the fixed category, ACPI limits features that go
into fixed space by the following criteria:
• Performance sensitive features.
• Features drivers require during wakeup.
• Features that enable catastrophic failure recovery.
CPU clock control and the power management timer are in fixed space to reduce the performance impact of
accessing this hardware, which will result in more quickly reducing a thermal condition or extending battery life.
If this logic were allowed to reside in PCI configuration space, for example, several layers of drivers would be
called to access this address space. This takes a long time and will either adversely affect the power of the
system (when trying to enter a low power state) or the accuracy of the event (when trying to get a time stamp
value).
Access to fixed space by the ACPI driver allows the ACPI driver to control the wakeup process without having
to load the entire OS. For example, if a PCI configuration space access is needed, the bus enumerator is loaded
with all drivers used by the enumerator.  Having this hardware in the fixed space at addresses with which the OS
can communicate without any other driver’s assistance, allows the ACPI driver to gather information prior to
making a decision as to whether it continues loading the entire OS or puts it back to sleep.
When the system has crashed, the ACPI driver can only access address spaces that need no driver support. In
such a situation, the ACPI driver will attempt to honor fixed power button requests to transition the system to the
G2 state.

4.2 Generic Programming Model
Although the fixed programming model requires registers to be defined at specified address locations, the
generic programming model allows registers to reside in most address spaces. The ACPI driver directly accesses
the fixed feature set registers, but ACPI relies on OEM-provided “pseudo code” (ASL-code) to access generic
register space.
ASL code is written by the OEM in the ACPI System Language (ASL) to control generic feature control and
event logic. The ASL language enables a number of things:
• Abstracts the hardware from the ACPI driver.
• Buffers OEM code from the different OS implementations.
One goal of ACPI is to allow the OEM “value added” hardware to remain basically unchanged in an ACPI
configuration. One attribute of value-added hardware is that it is all implemented differently. To enable the
ACPI driver to execute properly on different types of value added hardware, ACPI defines higher level “control
methods” that it calls to perform an action. The OEM provides ASL code, which is associated with control
methods, to be executed by the ACPI driver. By providing ASL-code, generic hardware can take on almost any
form.
Another important goal of ACPI is to provide OS independence. To do this the OEM code would have to
execute the same under any ACPI-compatible OS. ACPI allows for this by making the AML-code interpreter
part of the OS. This allows the OS to take care of synchronizing and blocking issues specific to each particular
OS.
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The ASL language provides many of the operators found in common object-oriented programming languages,
but it has been optimized to enable the description of platform power management and configuration hardware.
An ASL compiler  converts ASL source code to ACPI Machine Language (AML), which is a very compact
machine language that the ACPI AML code interpreter executes.
The generic feature model is represented in the following block diagram. In this model the generic feature is
described to the ACPI driver through AML code. This description takes the form of an object that sits in ACPI
name space associated with the hardware that it is adding value to.

Generic Event
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Control
Events

ACPI Driver
and AML-
Interpreter
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Control
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AMLRds

GP Event Status

Generic Child
Event Status

Figure 4-1  Generic Feature Model

As an example of a generic control feature, a platform might be designed such that the IDE HDD’s D3 state has
valued-added hardware to remove power from the drive. The IDE drive would then have a reference to the AML
PowerResource object (which controls the value added power plane) in its name space, and associated with that
object would be control methods that the ACPI driver calls to control the D3 state of the drive:
• _ON  A control method to sequence the IDE drive to the D0 state
• _OFF  A control method to sequence the IDE drive to the D3 state
• _STA A control method that returns the status of the IDE drive (on or off)
The control methods under this object provide an abstraction layer between the OS and the hardware.  The OS
understands how to control power planes (turn them on or off or to get their status) through its defined power
resource object, while the hardware has platform-specific AML code (contained in the appropriate control
methods) to perform the desired function.  In this example, the platform would describe its hardware to the
ACPI OS by writing and placing the AML code to turn the hardware off within the _OFF control method. This
enables the following sequence:
1. When the OS decides to place the IDE drive in the D3 state, it calls the IDE driver and tells it to place the

drive into the D3 state (at which point the driver saves the device’s context).
2. When the driver returns control, the OS calls the ACPI driver to place the drive in the D3 state.
3. The ACPI driver finds the object associated with the HDD and then finds within that object any AML code

associated with the D3 state.
4. The ACPI driver executes the appropriate _OFF control method to control the value-added “generic”

hardware to place the HDD into an even lower power state.
As an example of a generic event feature, a platform might have a docking capability. In this case, it will want to
generate an event. Notice that all ACPI events generate a System Control Interrupt, or SCI, which can be
mapped to any shareable system interrupt. In the case of docking, the event is generated when a docking has
been detected or when the user requests to undock the system. This enables the following sequence:
1. The ACPI driver responds to the SCI and calls the AML code event handler associated with that generic

event. The ACPI table associates the hardware event with the AML code event handler.
2. The AML-code event handler collects the appropriate information and then executes an AML Notify

operation to indicate to the ACPI driver that a particular bus needs re-enumeration.
The following sections describe the fixed and generic feature set of ACPI. These sections enable a reader to
understand the following:
• Which hardware is required or optional.
• How to design fixed features.
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• How to design generic features.
• The ACPI Event Model.

4.3 Diagram Legends
The hardware section uses simplified logic diagrams to represent how certain aspects of the hardware are
implemented. The following symbols are used in the logic diagrams to represent programming bits.

Write-only control bit

Enable, control or status bit.

Sticky status bit.
## Query Value

The half round symbol with an inverted “V” represents a write-only control bit.  This bit has the behavior that it
generates its control function when a HIGH value is programmed to it.  Reads to write-only bits are treated as
ignore by software (the bit position is masked off and ignored).
The round symbol with an “X” represents a programming bit. As an enable or control bit, software writing this
bit HIGH or LOW will result in the bit being read as HIGH or LOW (unless otherwise noted). As a status bit it
directly represents the value of the signal.
The square symbol represents a sticky status bit. A sticky status bit represents a bit set by a hardware signal’s
HIGH level (this bit is set by the level of the signal, not an edge). The bit is only cleared by software writing a
one to its bit position.
The rectangular symbol represents a query value from the embedded controller.  This is the value the embedded
controller returns to the system software upon a query command in response to an SCI event.  The query value is
associated with the event control method routine that will be scheduled to be executed upon an embedded
controller event.

4.4 Register Bit Notation
Throughout this section there are logic diagrams that reference bits within registers. These diagrams use a
notation that easily references the register name and bit position. The notation is as follows:

Registername.Bit
Registername contains the name of the register as it appears in this specification
Bit contains a zero-based decimal value of the bit position.
For example, the SLP_EN bit resides in the PM1x_CNT register bit 13 and would be represented in diagram
notation as:

SLP_EN
PM1x_CNT.13

4.5 The ACPI Hardware Model
The ACPI hardware is provided to allow the OS and hardware to sequence the platform between the various
global system states (G0-G3) as illustrated in the following figure. Upon first power-up the platform finds itself
in the global system state G3 or “Mechanical Off”. This state is defined as one where power consumption is very
close to zero -- the power plug has been removed; however, the real-time clock device still runs off a battery.
The G3 state is entered by any power failure, defined as accidental or user-initiated power loss.

The G3 state transitions into either the G0 working state or the Legacy state depending on what the platform
supports.  If the platform is an ACPI only platform, then it allows a direct boot into the G0 working state by
always returning the status bit SCI_EN HIGH (for more information, see section 4.7.2.5). If the platform
supports both legacy and ACPI operations (which is necessary for supporting a non-ACPI OS), then it would
always boot into the Legacy state (illustrated by returning the SCI_EN LOW).  In either case, a transition out of
the G3 state requires a total boot of the OS.

The Legacy system state is the global state where a non-ACPI OS executes. This state can be entered from either
the G3 “Mechanical Off,” the G2 “Soft Off,” or the G0  “Working” states only if the hardware supports both
Legacy and ACPI modes.  In the Legacy state, the ACPI event model is disabled (no SCIs are generated) and the
hardware uses legacy power management and configuration mechanisms. While in the Legacy state, an ACPI-
compliant OS can request a transition into the G0 working state by performing an ACPI mode request.  The OS
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performs this transition by writing the ACPI_ENABLE value to the SMI_CMD which generates an event to the
hardware to transition the platform to its ACPI mode.  When hardware has finished the transition it sets the
SCI_EN bit HIGH and returns control back to the OS.  While in the G0 “working state,” the OS can request a
transition to Legacy mode by writing the ACPI_DISABLE value to the SMI_CMD register, which results in the
hardware going into legacy mode and resetting the SCI_EN bit LOW (for more information, see section
4.7.2.5).

The G0 “Working” state is the normal operating environment of an ACPI machine. In this state different devices
are dynamically transitioning between their respective power states (D0, D1, D2 or D3) and processors are
dynamically transitioning between their respective power states (C0, C1, C2 or C3).  In this state, the OS can
make a policy decision to place the platform into the system G1 “sleeping” state. The platform can only enter a
single sleeping state at a time (referred to as the global G1 state); however, the hardware can provide up to four
system sleeping states that have different power and exit latencies represented by the S1, S2, S3, or S4 states.
When the OS decides to enter a sleeping state it picks the most appropriate sleeping state supported by the
hardware (OS policy examines what devices have enabled wakeup events and what sleeping these support). The
OS initiates the sleeping transition by enabling the appropriate wakeup events and then programming the
SLP_TYPx field with the desired sleeping state and then setting the SLP_ENx bit HIGH.  The system will then
enter a sleeping state; when one of the enabled wakeup events occurs, it will transition the system back to the
working state (for more information, see section 9).

Another global state transition option while in the G0 “working” state is to enter the G2 “soft off” or the G3
“mechanical off” state.  These transitions represent a controlled transition that allows the OS to bring the system
down in an orderly fashion (unloading applications, closing files, and so on).  The policy for these types of
transitions can be associated with the ACPI power button, which when pressed generates an event to the power
button driver. When the OS is finished preparing the operating environment for a power loss it will either
generate a pop-up message to indicate to the user to remove power in order to enter the G3 “Mechanical Off”
state, or it will initiate a G2 “soft-off” transition by writing the value of the S5 “soft off” system state to the
SLP_TYPx register and then setting the SLP_ENx bit HIGH.

The G1 sleeping state is represented by five possible sleeping states that the hardware can support.  Each
sleeping state has different power and wakeup latency characteristics. The sleeping state differs from the
working state in that the user’s operating environment is frozen in a low power state until awakened by an
enabled wakeup event. No work is performed in this state, that is, the processors are not executing instructions.
Each system sleeping state has requirements about who is responsible for system context and wakeup sequences
(for more information, see section 9).

The G2 “soft off” state is an OS initiated system shutdown. This state is initiated similar to the sleeping state
transition (SLP_TYPx is set to the S5 value and setting the SLP_ENx bit HIGH initiates the sequence).  Exiting
the G2 soft-off state requires rebooting the OS. In this case, an ACPI-only machine will re-enter the G0 state
directly (hardware returns the SCI_EN bit HIGH), while an ACPI/Legacy machine transitions to the Legacy
state (SCI_EN bit is LOW).
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Figure 4-2  Global States and Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control logic to implement this
behavior model. Events are used to notify the OS that some action is needed, and control logic is used by the OS
to cause some state transition. ACPI-defined events are “hardware” or “interrupt” events.  A hardware event  is
one that causes the hardware to unconditionally perform some operation. For example, any wakeup event will
sequence the system from a sleeping state (S1, S2, S3, and S4 in the global G1 state) to the G0 working state
(see Figure 10-1).

An interrupt event causes the execution of an event handler (AML code or an ACPI-aware driver), which allows
the software to make a policy decision based on the event. For ACPI fixed-feature events, the ACPI driver or an
ACPI-aware driver acts as the event handler. For generic logic events the ACPI driver will schedule the
execution of an OEM-supplied AML handler associated with the event.

For legacy systems, an event normally generates an OS-transparent interrupt, such as an System Management
Interrupt, or SMI. For ACPI systems the interrupt events need to generate an OS-visible interrupt that is
shareable; edge-style interrupts will not work. Hardware platforms that want to support both legacy operating
systems  and ACPI systems support a way of re-mapping the interrupt events between SMIs and SCIs when
switching between ACPI and legacy models. This is illustrated in the following block diagram.
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Figure 4-3  Example Event Structure for a Legacy/ACPI Compatible Event Model

This example logic illustrates the event model for a sample platform that supports both legacy and ACPI event
models. This example platform supports a number of external events that are power-related (power button, LID
open/close, thermal, ring indicate) or Plug and Play-related (dock, status change). The logic represents the three
different types of events:

1. OS Transparent Events.  These events represent OEM-specific functions that have no OS support and use
software that can be operated in an OS-transparent fashion (that is, SMIs).

2. Interrupt Events.   These events represent features supported by ACPI-compatible operating systems, but
are not supported by legacy operating systems. When a legacy OS is loaded, these events are mapped to the
transparent interrupt (SMI# in this example), and when in ACPI mode they are mapped to an OS-visible
shareable interrupt (SCI#).  This logic is represented by routing the event logic through the decoder that
routes the events to the SMI# arbiter when the SCI_EN bit is cleared, or to the SCI# arbiter when the
SCI_EN bit is set.

3. Hardware events. These events are used to trigger the hardware to initiate some hardware sequence such
as waking-up, resetting, or putting the machine to sleep unconditionally

In this example, the legacy power management event logic is used to determine device/system activity or
idleness based on device idle timers, device traps, and the global standby timer. Legacy power management
models use the idle timers to determine when a device should be placed in a low-power state because it is idle –
that is, the device has not been accessed for the programmed amount of time. The device traps are used to
indicate when a device in a low power state is being accessed by the OS. The global standby timer is used to
determine when the system should be allowed to go into a sleeping state because it is idle – that is, the user
interface has not been used for the programmed amount of time.
This traditional idle timers, trap monitors, and global standby timer are not used by the OS in the ACPI mode.
This work is now handled by different software structures in an ACPI-compatible OS. For example, the driver
model of an ACPI-compatible OS is responsible for placing its device into a low power state (D1, D2, or D3)
and transitioning it back to the On state (D0) when needed. And the OS is responsible for determining when the
system is idle by profiling the system (using the PM Timer) and other knowledge it gains through its operating
structure environment (which will vary from OS to OS). When the system is placed into the ACPI mode, these
events no longer generate SMIs, as this function is now handled by the drivers. These events are disabled
through some OEM-proprietary method.
On the other hand, many of the hardware events are shared between the ACPI and legacy models (docking, the
power button, and so on) and this type of interrupt event changes to an SCI event when enabled for ACPI. The
ACPI OS will generate a request to the platform’s hardware (BIOS) to enter into the ACPI mode. The BIOS sets
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the SCI_EN bit to indicate that the system has successfully entered into the ACPI mode, so this is a convenient
mechanism to map the desired interrupt (SMI or SCI) for these events (as shown in Figure 4-3).
The ACPI architecture requires some dedicated hardware not required in the legacy hardware model: the power
management timer (PM Timer). This is a free running timer that the ACPI OS uses to profile system activity.
The frequency of this timer is explicitly defined in this specification and must be implemented as described.
Although the ACPI architecture reuses most legacy hardware as is, it does place restrictions on where and how
the programming model is generated. If used, all fixed features are implemented as described in this
specification so that the ACPI driver can directly access the fixed feature registers.
Generic location features are manipulated by ACPI control methods principally residing in the ACPI name
space. These bits are made to be very flexible; however, their use is limited by the defined ACPI control
methods (for more information, see section 10).  These bits are normally associated with output bits that control
power planes, buffer isolation, and device reset resources. Additionally, “child” interrupt status bits can reside in
generic address space; however, they have a “parent” interrupt status bit in the GP_STS register. ACPI defines
five address spaces that these feature bits can reside in the following:
• System I/O space
• System memory space
• PCI configuration space
• Embedded controller space
• SMBus device space
Generic location feature bit space is described in the ACPI BIOS programming model. These power
management features can be implemented by spare I/O ports residing in any of these I/O spaces. The ACPI
specification defines an optional embedded controller and SMBus interfaces needed to communicate with these
I/O spaces.

4.5.1 Hardware Reserved Bits
ACPI hardware registers are designed such that reserved bits always return zero, and data writes to them have no
side affects. ACPI drivers are designed such that they will write zeros to reserved bits in enable and status
registers and preserve bits in control registers, and they will treat these bits as ignored.

4.5.2 Hardware Ignored Bits
ACPI hardware registers are designed such that ignored bits are undefined and are ignored by software.
Hardware-ignored bits can return zero or one. When software reads a register with ignored bits, it masks off
ignored bits prior to operating on the result. When software writes to a register with ignored bit fields, it
preserves the ignored bit fields.

4.5.3 Hardware Write-Only Bits
ACPI hardware defines a number of write-only control bits.  These bits are activated by software writing a 1 to
their bit position.  Reads to write-only bit positions generate undefined results.  Upon reads to registers with
write-only bits software masks out all write-only bits.

4.5.4 Cross Device Dependencies
Cross Device Dependency is a condition in which an operation to a device interferes with the operation of other
unrelated devices, or allows other unrelated devices to interfere with its behavior.  This condition is not
supportable and can cause platform failures.   ACPI provides no support for cross device dependencies and
suggests that devices be designed to not exhibit this behavior.  The following sections give two examples of
cross device dependencies:

4.5.4.1 Example 1
This example illustrates a cross device dependency where a device interferes with the proper operation of other
unrelated devices.  A system has two unrelated devices A and B.  Device A has a dependency that when it is
being configured it blocks all accesses that would normally be targeted for Device B.  Thus, the device driver
for Device B cannot access Device B while Device A is being configured; therefore, it  would  need to
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synchronize access with the driver for Device A.  High performance, multithreaded operating systems cannot
perform this kind of synchronization without seriously impacting performance.
To further illustrate the point, assume that device A is a serial port and device B is an hard drive controller. If
these devices demonstrate this behavior, then when a software driver configures the serial port, accesses to the
hard drive need to block.  This can only be done if the hard disk driver synchronizes access to the disk controller
with the serial driver. Without this synchronization, hard drive data will be lost when the serial port is being
configured.

4.5.4.2 Example 2
This example illustrates a cross-device dependency where a device demonstrates a behavior that allows other
unrelated devices to interfere with its proper operation. Device A exhibits a programming behavior that requires
atomic back-to-back write accesses to successfully write to its registers; if any other platform access is able to
break between the back-to-back accesses, then the write to device A is unsuccessful.  If the device A driver is
unable to generate atomic back-to-back accesses to its device, then it relies on software to synchronize accesses
to its device with every other driver in the system; then a device cross dependency is created and the platform is
prone to device A failure.

4.6 ACPI Features
This section describes the different features offered by the ACPI interface. These features are categorized as the
following:
• Fixed Features
• Generic Features
Fixed location features reside in system I/O space at the locations described by the ACPI programming model.
Generic location features reside in one of five address spaces (system I/O, system memory, PCI configuration,
embedded controller, or serial device I/O space) and are described by the ACPI name space.
Fixed features have exact definitions for their implementation. Although many fixed features are optional, if
implemented they must be implemented as described. This is required because a standard OS driver is talking to
these registers and expects the defined behavior.
Generic feature implementation is flexible. This logic is controlled by OEM-supplied ASL/AML-code (for more
information, see section 5), which can be written to support a wide variety of hardware. Also, ACPI provides
specialized control methods that provide capabilities for specialized devices. For example, the Notify command
can be used to notify the OS from the generic event handler that a docking or thermal event has taken place. A
good understanding of this section and section 5 of this specification will give designers a good understanding of
how to design hardware to take full advantage of an ACPI-compatible OS.
Note that the generic features are listed for illustration only, the ACPI specification can support many types of
hardware not listed.

Table 4-1   Feature/Programming Model Summary

Feature Name Description Requirements Programming Model
Power Management
Timer

24-bit/32-bit free running timer. Required for ACPI
compatibility.

Fixed Feature Control
Logic.

Power Button User pushes button to switch the
system between the working and
sleeping states.

Must have either a power
button or a sleep button.

Fixed Feature Event and
Control Logic or Generic
Event and Logic

Sleep Button User pushes button to switch the
system between the working and
sleeping state.

Must have either a power
button or a sleep button.

Fixed Feature Event and
Control Logic or Generic
Event and Logic.

Power Button
Over-ride

User sequence (press the power
button for 4 seconds) to turn off

This or a similar function
required.
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Feature Name Description Requirements Programming Model
a hung system.

Real Time Clock
Alarm

Programmed time to wake-up the
system.

Required for ACPI
compatibility (for S1-S3;
optional for S4).

Optional Fixed Feature
Event2

Sleep/Wake
Control Logic

Logic used to transition the
system between the sleeping and
working states.

Required for ACPI
compatibility. At least
one sleeping state needs
to be supported.

Fixed Feature Control
and Event Logic.

Embedded
Controller Interface

ACPI Embedded Controller
protocol and interface, as
described in section 13.

Optional. Generic Event Logic,
must reside in the general
purpose register block.

Legacy/ACPI
Select

Status bit to indicates the system
is using the legacy or ACPI
power management model
(SCI_EN).

Required. Status bit
indicates the mode of a
legacy/ACPI platform.

Fixed feature Control
Logic.

Lid switch Button used to indicate whether
the system’s lid is open or closed
(mobile systems only).

Optional, strongly
recommended for mobile
systems.

Generic Event Feature.

C1 Power State Processor instruction to place the
processor into a low-power state.

This is a required feature
for all IA-PC platforms.

Processor ISA.

C2 Power Control Logic to place the processor into
a C2 power state.

Optional, strongly
recommended for mobile
systems.

Fixed Feature Control
Logic.

C3 Power Control Logic to place the processor into
a C3 power state.

Optional, strongly
recommended for mobile
systems.

Fixed Feature Control
Logic.

Thermal Control Logic to generate thermal events
at specified trip points.

Optional Generic Event and
Control Logic. See
description of thermal
logic in section 3.9.

Device Power
Management

Control logic for switching
between different device power
states.

Optional, strongly
recommended for mobile
systems.

Generic control logic.

AC Adapter Logic to detect the insertion and
removal of the AC adapter.

Optional Generic event logic

Docking/device
insertion and
removal

Logic to detect device insertion
and removal events

Optional Generic event logic

4.7 ACPI Register Model
ACPI hardware resides in one of five I/O spaces:
• System I/O
• System memory
• PCI configuration
• SMBus
• Embedded controller space
Different implementations will result in different address spaces being used for different functions; however, all
ACPI implementations are required to support system I/O space (the other address spaces are optional). The
ACPI specification consists of “fixed registers” and general purpose registers. The fixed register space is

                                                          
2 RTC wake-up alarm is required, the fixed feature status bit is optional.



ACPI Hardware Specification 4-43

Intel/Microsoft/Toshiba

required to be implemented by all ACPI-compatible hardware. The general purpose register space is required for
any events generated by value-added hardware.
ACPI defines a register block. An ACPI-compatible system will have an ACPI table (the FACP, built in memory
at boot-up) that has a list of 32-bit pointers to the different register blocks used by the ACPI driver.  The bits
within these registers have attributes defined for the given register block. The types of registers that ACPI
defines are:
• Status/Enable Registers (for events)
• Control Registers
If a register block is of the status/enable type, then it will contain a register with status bits, and a corresponding
register with enable bits. The status and enable bits have an exact implementation definition that needs to be
followed (unless otherwise noted), which is illustrated by the following diagram:

Status Bi t

Enable Bi t

Event  Input Event  Output

Figure 4-4  Block Diagram of a Status/Enable Cell

Note that the status bit, which hardware sets by the Event Input being HIGH in this example, can only be cleared
by software writing a 1 to its bit position. Also, the enable bit has no effect on the setting or resetting of the
status bit; it only determines if the SET status bit will generate an “Event Output,” which generates an SCI when
high if its enable bit is set.
ACPI also defines register groupings. A register grouping consists of two register blocks, with two pointers to
two different blocks of registers, where each bit location within a register grouping is fixed and cannot be
changed. The bits within a register grouping, which have fixed bit positions, can be split between the two
register blocks. This allows the bits within a register grouping to reside in either or both register blocks,
facilitating the ability to map bits within several different chip partitioning and providing the programming
model with a single register grouping bit structure.
The ACPI driver treats a register grouping as a single register; but located in multiple places. To read a register
grouping, the ACPI driver will read the “A” register block, followed by the “B” register block, and then will
logically “OR” the two results together (the SLP_TYP field is an exception to this rule). Reserved bits, or
unused bits within a register block always return zero for reads and have no side affects for writes (which is a
requirement).
The SLP_TYPx field can be different for each register grouping. The respective sleeping object \_Sx contains a
SLP_TYPa and a SLP_TYPb field. That is, the object returns a package with two integer values of 0-7 in it. The
ACPI driver will always write the SLP_TYPa value to the “A” register block followed by the SLP_TYPb value
within the field to the “B” register block. All other bit locations will be written with the same value. Also, the
ACPI driver does not read the SLP_TYPx value but throws it away.

Register  B lock a

Regis ter  B lock b

Bit d Bit c Bit b Bit aBit e

Register
Grouping

Figure 4-5  Example Fixed Feature Register Grouping

As an example, the above diagram represents a register grouping consisting of register block a and register block
b. Bits “a” and “d” are implemented in register block b and register block a returns a zero for these bit positions.
Bits “b”, “c” and “e” are implemented in register block a and register block b returns a zero for these bit
positions. All reserved or ignored bits return their defined ACPI values.
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When accessing this register grouping, software will read register block a, followed by reading register block b.
Software then does a logical OR of the two registers and then operates on the results.

When writing to this register grouping, software will write the desired value to register group a followed by
writing the same value to register group b.

ACPI defines the following register blocks for fixed features. Each register block gets a separate pointer from
the FACP ACPI table. These addresses are set by the OEM as static resources, so they are never changed -- the
Plug and Play driver cannot re-map ACPI resources. The following register blocks are defined:

PM1a_EVT_BLK

PM1b_EVT_BLK

PM2 Control  Block

PM Timer Block

Processor Block

Register GroupingsRegisters Blocks

PM1a_STS
PM1a_EN

PM1 EVT Grouping

PM2 CNT Grouping
PM1a_CNT_BLK

PM1b_CNT_BLK

PM1b_STS
PM1b_EN

PM1a_CNT

PM1b_CNT

PM2_CNT_BLKPM2_CNT

PM_TMR_BLKPM_TMR

P_BLK
P_CNT

LVL2
LVL3

Registers

GPE0_BLK

GPE1_BLK

GPE0_STS
GPE0_EN

GPE1_STS
GPE1_EN

General Purpose Event 0
Block

General Purpose Event 1
Block

Figure 4-6  Register Blocks versus Register Groupings

The PM1 EVT grouping consists of the PM1a_EVT and PM1b_EVT register blocks, which contain the fixed
feature event bits. Each event register block (if implemented) contains two registers: a status register and an
enable register. Each register grouping has a defined bit position that cannot be changed; however, the bit can be
implemented in either register block (A or B). The A and B register blocks for the events allow chipsets to vary
the partitioning of events into two or more chips. For read operations, the OS will generate a read to the
associated A and B registers, OR the two values together, and then operate on this result. For write operations,
the OS will write the value to the associated register in both register blocks. Therefore, there are a number of
rules to follow when implementing event registers:
• Reserved or unimplemented bits always return zero (control or enable).
• Writes to reserved or unimplemented bits have no affect.
The PM1 CNT grouping contains the fixed feature control bits and consist of the PM1a_CNT_BLK and
PM1b_CNT_BLK register blocks. Each register block is associated with a single control register. Each register
grouping has a defined bit position that cannot be changed; however, the bit can be implemented in either
register block (A or B). There are a number of rules to follow when implementing CNT registers:
• Reserved or unimplemented bits always return zero (control or enable).
• Writes to reserved or unimplemented bits  have no affect.
The PM2_CNT_BLK register block currently contains a single bit for the arbiter disable function
The general-purpose event register contains the event programming model for generic features. All generic
events, just as fixed events, generate SCIs. Generic event status bits can reside anywhere; however, the top level
generic event resides in one of the general-purpose register blocks. Any generic feature event status not in the
general-purpose register space is considered a child or sibling status bit, whose parent status bit is in the general-
purpose event register space. Note that it is possible to have N levels of general-purpose events prior to hitting
the GPE event status.
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The general-purpose event register space is contained in two register blocks: The GPE0_BLK or the
GPE1_BLK. Each register block has a separate 32-bit pointer within the FACP ACPI table. Each register block
is further broken into two registers: GPEx_STS and GPEx_EN. The status and enable registers in the general-
purpose event registers follows the event model for the fixed-event registers.

4.7.1 ACPI Register Summary
The following tables summarize the ACPI registers:

Table 4-2   PM1 Event Registers

Register Size (Bytes) Address (relative to register block)
PM1a_STS PM1_EVT_LEN/2 <PM1a_EVT_BLK >
PM1a_EN PM1_EVT_LEN/2 <PM1a_EVT_BLK >+PM1_EVT_LEN/2
PM1b_STS PM1_EVT_LEN/2 <PM1b_EVT_BLK >
PM1b_EN PM1_EVT_LEN/2 <PM1b_EVT_BLK >+PM1_EVT_LEN/2

Table 4-3   PM1 Control Registers

Register Size (Bytes) Address (relative to register block)
PM1_CNTa PM1_CNT_LEN <PM1a_CNT_BLK >
PM1_CNTb PM1_CNT_LEN <PM1b_CNT_BLK >

Table 4-4   PM2 Control Register

Register Size (Bytes) Address (relative to register block)
PM2_CNT PM2_CNT_LEN <PM2_CNT_BLK >

Table 4-5   PM Timer Register

Register Size (Bytes) Address (relative to register block)
PM_TMR PM_TMR_LEN <PM_TMR_BLK >

Table 4-6   Processor Control Registers

Register Size (Bytes) Address (relative to register block)
P_CNT 32 <P_BLK>
P_LVL2 8 <P_BLK>+4h
P_LVL3 8 <P_BLK>+5h

Table 4-7  General-Purpose Event Registers

Register Size (Bytes) Address (relative to register block)
GPE0_STS GPE0_LEN/2 <GPE0_BLK>
GPE0_EN GPE0_LEN/2 <GPE0_BLK>+GPE0_LEN/2
GPE1_STS GPE1_LEN/2 <GPE1_BLK>
GPE1_EN GPE1_LEN/2 <GPE1_BLK>+GPE1_LEN/2

4.7.1.1 PM1 Event Registers
The PM1 event register grouping contains two register blocks: the PM1a_EVT_BLK is a required register block
that must be supported, and the PM1b_EVT_BLK is an optional register block. Each register block has a unique
32-bit pointer in the Fixed ACPI Table (FACP) to allow the PM1 event bits to be partitioned between two chips.
If the PM1b_EVT_BLK is not supported, its pointer contains a value of zero in the FACP table.
Each register block in the PM1 event grouping contains two registers that are required to be the same size: the
PM1x_STS and PM1x_EN (where x can be “a” or “b”). The length of the registers is variable and is described
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by the PM1_EVT_LEN field in the FACP table, which indicates the total length of the register block in bytes.
Hence if a length of “4” is given, this indicates that each register contains two bytes of I/O space. The PM1
event register block  has a minimum size of 4 bytes.

4.7.1.2 PM1 Control Registers
The PM1 control register grouping contains two register blocks: the PM1a_CNT_BLK is a required register
block that must be supported, and the PM1b_CNT_BLK is an optional register block. Each register block has a
unique 32-bit pointer in the Fixed ACPI Table (FACP) to allow the PM1 event bits to be partitioned between
two chips. If the PM1b_CNT_BLK is not supported, its pointer contains a value of zero in the FACP table.
Each register block in the PM1 control grouping contains a single register: the PM1x_CNT. The length of the
register is variable and is described by the PM1_CNT_LEN field in the FACP table, which indicates the total
length of the register block in bytes. The PM1 control register block must have a minimum size of 2 bytes.

4.7.1.3 PM2 Control Register
The PM2 control register is contained in the PM2_CNT_BLK register block. The FACP table contains a length
variable for this register block (PM2_CNT_LEN) that is equal to the size in bytes of the PM2_CNT register (the
only register in this register block). This register block is optional, if not supported its block pointer and length
contains a value of zero.

4.7.1.4 PM Timer Register
The PM timer register is contained in the PM_TMR_BLK register block. This register block contains the
register that returns the running value of the power management timer. The FACP table also contains a length
variable for this register block (PM_TMR_LEN) that is equal to the size in bytes of the PM_TMR register (the
only register in this register block).

4.7.1.5 Processor Control Block
There is an optional processor control register block for each processor in the system. This is a homogeneous
feature, so all processors must have the same level of support. The ACPI OS will revert to the lowest common
denominator of processor control block support. The processor control block contains the processor control
register (a 32-bit clock control configuration register) and the P_LVL2 and P_LVL3 clock control register. The
32-bit register controls the behavior of the processor clock logic for that processor, the P_LVL2 register is used
to force the CPU into the C2 state, and the P_LVL3 register is used to force the processor into the C3 state.

4.7.1.6 General-Purpose Event Registers
The general-purpose event registers contain the root level events for all generic features. To facilitate the
flexibility of partitioning the root events, ACPI provides for two different general-purpose event blocks:
GPE0_BLK and GPE1_BLK. These are separate register blocks and are not a register grouping, because there
is no need to maintain an orthogonal bit arrangement. Also, each register block contains its own length variable
in the FACP table, where GPE0_LEN and GPE1_LEN represent the length in bytes of each register block.
Each register block contains two registers of equal length: GPEx_STS and GPEx_EN (where x is 0 or 1). The
length of the GPE0_STS and GPE0_EN registers is equal to half the GPE0_LEN. The length of the GPE1_STS
and GPE1_EN registers is equal to half the GPE1_LEN. If a generic register block is not supported then its
respective block pointer and block length values in the FACP table contain zeros. The GPE0_LEN and
GPE1_LEN do not need to have the same size.

4.7.2 Required Fixed Features
This section describes the ACPI required fixed features. These features are required in every ACPI-compatible
system.

4.7.2.1 Power Management Timer
The ACPI specification requires a power management timer that provides an accurate time value used by system
software to measure and profile system idleness (along with other tasks). The power management timer provides
an accurate time function while the system is in the working (G0) state. To allow software to extend the number
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of bits in the timer, the power management timer generates an interrupt when the last bit of the timer changes
(from 0 to 1 or 1 to 0). ACPI supports either a 24-bit or 32-bit power management timer. The PM Timer is
accessed directly by the ACPI driver, and its programming model is contained in fixed register space. The
programming model can be partitioned in up to three different register blocks. The event bits are contained in
the PM1_EVT register grouping, which has two register blocks, and the timer value can be accessed through the
PM_TMR_BLK register block. A block diagram of the power management timer is illustrated in the following
figure:

P M T M R _ P M E

T M R _ E N
PM1x_EN.0

3.579545 MHz

--  24/32

T M R _ V A L
PM_TMR.0-23 /0 -31

T M R _ S T S
PM1x_STS.024/32-bit

Counter
Bits(23/31-0)

Figure 4-7   Power Management Timer

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that runs off a
3.579545 MHz clock. The ACPI OS checks the FACP table to determine whether the PM Timer is a 32-bit or
24-bit timer. The programming model for the PM Timer consists of event logic, and a read port to the counter
value. The event logic consists of an event status and enable bit. The status bit is set any time the last bit of the
timer (bit 23 or bit 31) goes from HIGH to LOW or LOW to HIGH. If the TMR_EN bit is set, then the setting
of the TMR_STS will generate an ACPI event in the PM1_EVT register grouping (referred to as PMTMR_PME
in the diagram). The event logic is only used to emulate a larger timer.
The ACPI uses the read-only TMR_VAL field (in the PM TMR register grouping) to read the current value of
the timer. The OS never assumes an initial value of the TMR_VAL field; instead, it reads an initial TMR_VAL
upon loading the OS and assumes that the timer is counting. The only timer reset requirement is that the timer
functions while in the working state.
The PM Timer’s programming model is implemented as a fixed feature to increase the accuracy of reading the
timer.

4.7.2.2 Buttons
ACPI defines user-initiated events to request the OS to transition the platform between the G0 working state and
the G1 (sleeping), G2 (soft off) and G3 (mechanical off) states. ACPI also defines a recommended mechanism
to unconditionally transition the platform from a hung G0 working state to the G2 soft-off state.
ACPI operating systems use power button events to determine when the user is present. As such, these ACPI
events are associated with buttons in the ACPI specification.
The ACPI specification supports two button models:
• A single-button model that generates an event for both sleeping and entering the soft-off state. The function

of the button can be configured using the OS UI.
• A dual-button model where the power button generates a soft-off transition request and a sleeping button

generates a sleeping transition request. The function of the button is implied by the type of button.
Control of these button events is either through the fixed programming model or the generic programming
model (control method based). The fixed programming model has the advantage that the OS can access the
button at any time, including when the system is crashed.  In a crashed system with a fixed-feature power button,
the OS can make a “best” effort to determine whether the power button has been pressed to transition to the
system to the soft-off state, because it doesn’t require the AML interpreter to access the event bits.

4.7.2.2.1 Power Button
The power button logic can be used in one of two models: single button or dual button.  In the single-button
model, the user button acts as both a power button for transitioning the system between the G0 and G2 states and
a sleeping button for transitioning the system between the G0 and G1 states. The action of the user pressing the
button is determined by software policy or user settings. In the dual-button model, there are separate buttons for
sleeping and power control. Although the buttons still generate events that cause software to take an action, the
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function of the button is now dedicated:  the sleeping button generates a sleeping request to the OS and the
power button generates a waking request.
Support for a power button is indicated by a combination of the PWR_BUTTON flag and the power button
device object, as shown in the following:
Indicated Support PWR_BUTTON Flag Power Button Device Object
No power button Set HIGH Absent
Fixed feature power button Set LOW Absent
Control method power button Set HIGH Present

The power button can also have an additional capability to unconditionally transition the system from a hung
working state to the G2 soft-off state. In the case where the OS event handler is no longer able to respond to
power button events, the power button over-ride feature provides a back-up mechanism to unconditionally
transition the system to the soft-off state. This feature can be used when the platform doesn’t have a mechanical
off button, which can also provide this function. ACPI defines that holding the power button active for four
seconds or longer will generate a power button over-ride event.

4.7.2.2.1.1 Fixed Power Button
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Figure 4-8  Fixed Power Button Logic

The fixed power button has its event programming model in the PM1x_EVT_BLK.  This logic consists of a
single enable bit and sticky status bit.  When the user presses the power button, the power button status bit
(PWRBTN_STS) is unconditionally set. If the power button enable bit (PWRBTN_EN) is set and the power
button status bit is set (PWRBTN_STS) due to a button press while the system is in the G0 state, then an SCI is
generated. The ACPI driver responds to the event by clearing the PWRBTN_STS bit.  The power button logic
provides debounce logic that sets the PWRBTN_STS bit on the button press “edge.”
While the system is in the G1 or G2 global states (S1, S2, S3, S4 or S5 states), any further power button press
after the button press that transistioned the system into the sleeping state unconditionally sets the power button
status bit and awakens the system, regardless of the value of the power button enable bit. The ACPI driver
responds by clearing the power button status bit and awakening the system.

4.7.2.2.1.2 Control Method Power Button
The power button programming model can also use the generic programming model. This allows the power
button to reside in any of the generic address spaces (for example, the embedded controller) instead of fixed
space. If the power button programming model uses the generic programming model, then the OEM needs to
define the power button as a device with an _HID object value of “PNP0C0C,” which then identifies this device
as the power button to the ACPI driver. The AML event handler  then generates a Notify command to notify the
OS that a power button event was generated. While the system is in the working state, a power button press is a
user request to transition the system into either the sleeping (G1) or soft-off state (G2). In these cases, the power
button event handler issues the Notify command with the device specific code of 0x80. This indicates to the
ACPI driver to pass control to the power button driver (PNP0C0C) with the knowledge that a transition out of
the G0 state is being requested. Upon waking up from a G1 sleeping state, the AML event handler generates a
notify command with the code of 0x2 to indicate it was responsible for waking up the system.
The power button device needs to be declared as a device within the ACPI name space for the platform and only
requires an _HID. An example definition follows.
This example ASL code does the following:
• Creates a device named “PWRB” and associates the Plug and Play identifier (through the _HID object) of

“PNP0C0C.”
• The Plug and Play identifier associates this device object with the power button driver.

• Creates an operational region for the control method power button’s programming model:
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• System I/O space at 0x200.
• Unaccessed fields are written as Ones. These status bits clear upon writing a 1 to their bit position,

therefore preserved would fail in this case.
• Creates a field within the operational region for the power button status bit (called PBP). In this case the

power button status bit is a child of the general-purpose status bit 0.  This bit is written HIGH to be cleared
and is the responsibility of the ASL-code to clear (the ACPI driver clears the general-purpose status bits).
The address of the status bit is 0x200.0 (bit 0 at address 0x200).

• Creates an additional status bit called PBW for the power button wakeup event.  This is the next bit and its
physical address would be 0x200.1 (bit 1 at address 0x200).

• Generates an event handler for the power button that is connected to bit 0 of the general-purpose status
register 0. The event handler does the following:

• Clears the power button status bit in hardware (writes a one to it)
• Notifies the OS of the event by calling the Notify command passing the power button object and

the device specific event indicator 0x80.

// Define a control method power button
Device(\_SB.PWRB){

Name(_HID, EISAID(“PNP0C0C”))
}

OperationRegion(\Pho, SystemIO, 0x200, 0x1)
Field(\Pho, ByteAcc, NoLock, WriteAsZeros){

PBP, 1, //  sleep/off request
PBW, 1 //  wakeup request
} // end of power button device object

Scope(\_GPE){ // Root level event handlers
Method(_L00){ // uses bit 0 of GP0_STS register

If(PBP){
Store(One, PBP) // clear power button status
Notify(PWRB, 0x80) // Notify OS of event
}

IF(PBW){
Store(One, PBW)
Notify(PWRB, 0x2)
}

} // end of _L00 handler
} // end of \_GPE scope

4.7.2.2.1.3 Power Button Over-ride
The ACPI specification also allows that if the user presses the power button for more than four seconds while
the system is in the working state, a hardware event is generated and the system will transition to the soft-off
state. This hardware event is called a power button over-ride. In reaction to the power button over-ride event, the
hardware clears the power button status bit (PWRBTN_STS).

4.7.2.2.2 Sleep Button
When using the two button model, ACPI supports a second button that when pressed will request the OS to
transition the platform between the G0 working and G1 sleeping states.  Support for a sleep button is indicated
by a combination of the SLEEP_BUTTON flag and the sleep button device object:
Indicated Support SLEEP_BUTTON Flag Sleep Button Device Object
No sleep button Set HIGH Absent
Fixed feature sleep button Set LOW Absent
Control method sleep button Set HIGH Present



Advanced Configuration and Power Management Interface Specification 4-50

Intel/Microsoft/Toshiba

4.7.2.2.2.1 Fixed Sleeping Button
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Figure 4-9  Fixed Sleep Button Logic

The fixed sleep button has its event programming model in the PM1x_EVT_BLK.  This logic consists of a
single enable bit and sticky status bit.  When the user presses the sleep button, the sleep button status bit
(SLPBTN_STS) is unconditionally set. Additionally, if the sleep button enable bit (SLPBTN_EN) is set, and the
sleep button status bit is set (SLPBTN_STS, due to a button press) while the system is in the G0 state, then an
SCI is generated. The ACPI driver responds to the event by clearing the SLPBTN_STS bit.  The sleep button
logic provides debounce logic that sets the SLPBTN_STS bit on the button press “edge.”
While the system is sleeping (in either the S0, S1, S2, S3 or S4 states), any further sleep button press (after the
button press that caused the system transition into the sleeping state) sets the sleep button status bit
(SLPBTN_STS) and awakens the if the SLP_EN bit is set.  The ACPI driver responds by clearing the sleep
button status bit and awakening the system.

4.7.2.2.2.2 Control Method Sleeping Button
The sleep button programming model can also use the generic programming model. This allows the sleep button
to reside in any of the generic address spaces (for example, the embedded controller) instead of fixed space.  If
the sleep button programming model resides in generic address space, then the OEM needs to define the sleep
button as a device with an _HID object value of “PNP0C0E”, which then identifies this device as the sleep
button to the ACPI driver.  The AML event handler then generates a Notify command to notify the OS that a
sleep button event was generated.  While in the working state, a sleep button press is a user request to transition
the system into the sleeping (G1) state.  In these cases the sleep button event handler issues the Notify command
with the device specific code of 0x80.  This will indicate to the ACPI driver to pass control to the sleep button
driver (PNP0C0E) with the knowledge that a transition out of the G0 state is being requested by the user.  Upon
waking-up from a G1 sleeping state, the AML event handler generates a Notify command with the code of 0x2
to indicate it was responsible for waking up the system.
The sleep button device needs to be declared as a device within the ACPI name space for the platform and only
requires an _HID. An example definition is shown below.
The AML code below does the following:
• Creates a device named “SLPB” and associates the Plug and Play identifier (through the _HID object) of

“PNP0C0E”.
• The Plug and Play identifier associates this device object with the sleep button driver.

• Creates an operational region for the control method sleep button’s programming model
• System I/O space at 0x201.
• Unaccessed fields are written as Ones (these status bits clear upon writing a one to their bit

position, hence preserved would fail in this case).
• Creates a field within the operational region for the sleep button status bit (called PBP). In this case the

sleep button status bit is a child of the general-purpose status bit 0.  This bit is written HIGH to be cleared
and is the responsibility of the AML code to clear (the ACPI driver clears the general-purpose status bits).
The address of the status bit is 0x201.0 (bit 0 at address 0x201).

• Creates an additional status bit called PBW for the sleep button wakeup event.  This is the next bit and its
physical address would be 0x201.1 (bit 1 at address 0x201).

• Generates an event handler for the sleep button that is connected to bit 0 of the general-purpose status
register 0. The event handler does the following:

• Clears the sleep button status bit in hardware (writes a one to it)
• Notifies the OS of the event by calling the Notify command passing the sleep button object and the

device specific event indicator 0x80.
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// Define a control method sleep button
Device(\_SB.SLPB){

Name(_HID, EISAID(“PNP0C0E”))
OperationRegion(\Boo, SystemIO, 0x201, 0x1)
Field(\Boo, ByteAcc, NoLock, WriteAsZeros){

SBP, 1, //  sleep request
SBW, 1 //  wakeup request
} // end of sleep button device object

}
Scope(\_GPE){ // Root level event handlers

Method(_L01){ // uses bit 1 of GP0_STS register
If(SBP){

Store(One, SBP) // clear sleep button status
Notify(SLPB, 0x80) // Notify OS of event
}

IF(SBW){
Store(One, SBW)
Notify(SLPB, 0x2)
}

} // end of _L01 handler
} // end of \_GPE scope

4.7.2.3 Sleeping/Wake Control
The sleeping/wake logic consists of logic that will sequence the system into the defined low-power hardware
sleeping state (S1-S4) or soft-off state (S5) and will awaken the system back to the working state upon a wake
event. Note that the S4BIOS state is entered in a different manner (for more information, see section 9.1.4.2).
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Figure 4-10   Sleeping/Wake Logic

The logic is controlled by two bit fields: Sleep Enable (SLP_EN) and Sleep Type (SLP_TYPx). The type of
sleep state desired is programmed into the SLP_TYPx field and upon assertion of the SLP_EN the hardware will
sequence the system into the defined sleeping state. The ACPI driver gets values for the SLP_TYPx field from
the \_Sx objects defined in the static definition block. If the object is missing the ACPI driver assumes the
hardware does not support that sleeping state. Prior to entering the desired sleeping state, the ACPI driver will
read the designated \_Sx object and place this value in the SLP_TYP field.
Additionally ACPI defines a fail-safe Off protocol called the “power switch override,” which allows the user to
initiate an Off sequence in the case where the system software is no longer able to recover the system (the
system has hung).  ACPI defines that this sequence be initiated by the user pressing the power button for over 4
seconds, at which point the hardware unconditionally sequences the system to the Off state. This logic is
represented by the PWRBTN_OR signal coming into the sleep logic.
While in any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to sequence the
system back to the working state (G0). The “Wake Status” bit (WAK_STS) is provided for the ACPI driver to
“spin-on” after setting the SLP_EN/SLP_TYP bit fields. When waking from the S1 sleeping state, execution
control is passed backed to the ACPI driver immediately, whereas when waking from the S2-S5 states execution
control is passed to the BIOS software (execution begins at the CPU’s reset vector). The WAK_STS bit
provides a mechanism to separate the ACPI driver’s sleeping and waking code during an S1 sequence.  When
the hardware has sequenced the system into the sleeping state (defined here as the processor is no longer able to
execute instructions), any enabled wakeup event is allowed to set the WAK_STS bit and sequence the system
back on (to the G0 state). If the system does not support the S1 sleeping state, the WAK_STS bit can always
return zero.
The sleeping/wake logic is required for ACPI compatibility, however only a single sleeping state is required to
be supported (S1-S4). If more than a single sleeping state is supported, then the sleeping/wake logic is required
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to be able to dynamically sequenced between the different sleeping states by waking the system, programming
the new sleep state into the SLP_TYP field, and then by setting the SLP_EN bit.

4.7.2.4 Real Time Clock Alarm
The ACPI specification requires that the Real Time Clock (RTC )alarm generate a hardware wake-up event
from the sleeping state. The RTC can be programmed to generate an alarm. An enabled RTC alarm can be used
to generate a wake event when the system is in a sleeping state. The ACPI provides for additional hardware to
support the ACPI driver in determining that the RTC was the source of the wakeup event: the RTC_STS and
RTC_EN bits.  Although these bits are optional, if supported they must be implemented as described here. If the
RTC_STS and RTC_EN bits are not supported, the OS will attempt to identify the RTC as a possible wakeup
source; however, it might miss certain wakeup events. The RTC wake-up feature is required to work in the
following sleeping states: S1-S3. S4 wakeup is optional and supported through the RTC_S4 flag within the
FACP table (if set HIGH, then the platform supports RTC wakeup in the S4 state)3.
When the RTC generates an alarm event the RTC_STS bit will be set. If the RTC_EN bit is set, an RTC
hardware power management event will be generated (which will wake the system from a sleeping state,
provided the battery low signal is not asserted).

Real  T ime Clock
(RTC) RTC Wake -up

Event

R T C _ E N
PM1x_EN.10

R T C _ S T S
PM1x_STS.10

Figure 4-11   RTC Alarm

The RTC wakeup event status and enable bits within the fixed feature space is optional, and a flag within the
FACP table (FIXED_RTC) indicates if the register bits are to be used by the ACPI driver or not. Having the
RTC wakeup event in fixed feature space allows the ACPI driver to determine if the RTC was the source of the
wakeup event without loading the entire OS. If the fixed feature event bits are not supported, then the OS will
attempt to determine this by reading the RTC’s status field.
The ACPI driver supports enhancements over the existing RTC device (which only supports a 99 year date and
24-hour alarm). Optional extensions are provided for the following features:
• Day Alarm. The DAY_ALRM field points to an optional CMOS RAM location that selects the day within

the month to generate an RTC alarm.
• Month Alarm . The MON_ALRM field points to an optional CMOS RAM location that selects the month

within the year to generate an RTC alarm.
• Centenary Value. The CENT field points to an optional CMOS RAM location that represents the

centenary value of the date (thousands and hundreds of years).
The RTC_STS bit is set through the RTC interrupt (IRQ8 in PC architecture systems). The OS will insure that
the periodic and update interrupt sources are disabled prior to sleeping. This allows the RTC’s interrupt pin to
serve as the source for the RTC_STS bit generation.

Table 4-8   Alarm Field Decodings within the FACP Table

Field Value Address (Location) in RTC CMOS
RAM (Must be Bank 0)

DAY_ALRM Eight bit value that can represent
0x01-0x31 days in BCD or 0x01-
0x1F days in binary. Bits 6 and 7 of
this field are treated as Ignored by
software. The RTC is initialized such
that this field contains a don’t care

The DAY_ALRM field in the FACP table
will contain a non-zero value that
represents an offset into the RTC’s
CMOS RAM area that contains the day
alarm value. A value of zero in the
DAY_ALRM field indicates that the day

                                                          
3 Note that the G2/S5 “soft off” and the G3 “mechanical off” states are not sleeping states.  The OS will disable
the RTC_EN bit prior to entering the G2/S5 or G3 states regardless.
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Field Value Address (Location) in RTC CMOS
RAM (Must be Bank 0)

value when the BIOS switches from
legacy to ACPI mode. A don’t care
value can be any unused value (not
0x1-0x31 BCD or 0x01-0x1F hex)
that the RTC reverts back to a 24 hour
alarm.

alarm feature is not supported.

MON_ALRM Eight bit value that can represent 01-
12 months in BCD or 0x01-0xC
months in binary. The RTC is
initialized such that this field contains
a don’t care value when the BIOS
switches from legacy to ACPI mode.
A don’t care value can be any unused
value (not 1-12 BCD or x01-xC hex)
that the RTC reverts back to a 24 hour
alarm and/or 31 day alarm).

The MON_ALRM field in the FACP
table will contain a non-zero value that
represents an offset into the RTC’s
CMOS RAM area that contains the month
alarm value. A value of zero in the
MON_ALRM field indicates that the
month alarm feature is not supported. If
the month alarm is supported, the day
alarm function must also be supported.

CENTURY 8-bit BCD or binary value. This value
indicates the thousand year and
hundred year (Centenary ) variables of
the date in BCD (19 for this century,
20 for the next) or binary (x13 for this
century, x14 for the next).

The CENTURY field in the FACP table
will contain a non-zero value that
represents an offset into the RTC’s
CMOS RAM area that contains the
Centenary value for the date. A value of
zero in the CENTURY field indicates that
the Centenary value is not supported by
this RTC.

4.7.2.5 Legacy/ACPI Select and the SCI Interrupt
As mentioned previously, power management events are generated to initiate an interrupt or hardware sequence.
ACPI operating systems use the SCI interrupt handler to respond to events, while legacy systems use some type
of transparent interrupt handler to respond to these events (that is, an SMI interrupt handler). ACPI-compatible
hardware can choose to support both legacy and ACPI modes or just an ACPI mode. Legacy hardware is needed
to support these features for non-ACPI compatible OS’s. When the ACPI OS loads, it scans the BIOS tables to
determine that the hardware supports ACPI, and then if the it finds the SCI_EN bit reset (indicating that ACPI is
not enabled), issues an ACPI activate command to the SMI handler through the SMI command port. The BIOS
acknowledges the switching to the ACPI model of power management by setting the SCI_EN bit (this bit can
also be used to switch over the event mechanism as illustrated below):
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Figure 4-12   Power Management Events to SMI/SCI Control Logic

The interrupt events (those that generate SMIs in legacy mode and SCIs in ACPI mode) are sent through a
decoder controlled by the SCI_EN bit. For legacy mode this bit is reset, which routes the interrupt events to the
SMI interrupt logic. For ACPI mode this bit is set, which routes interrupt events to the SCI interrupt logic. This
bit always return HIGH for ACPI-compatible hardware that does not support a legacy power management mode
(the bit is wired to read as “1” and ignore writes).
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The SCI interrupt is defined to be a shareable interrupt and is connected to an OS visible interrupt that uses a
shareable protocol. The FACP ACPI table has an entry that indicates what interrupt the SCI interrupt is mapped
to (see section 5.2.5).
If the ACPI platform supports both legacy and ACPI modes, it has a register that generates a hardware event (for
example, SMI for IA-PC processors).  The ACPI driver uses this register to request the hardware to switch in
and out of ACPI mode. Within the FACP tables are three values that signify the system I/O address
(SMI_CMD) of this port and the data value written to enable the ACPI state (ACPI_ENABLE), and to disable
the ACPI state (ACPI_DISABLE).
To transition an ACPI/Legacy platform from the Legacy mode to the ACPI mode the following would occur:
1. ACPI driver checks that the SCI_EN bit is zero, and that it is in the Legacy mode.
2. The ACPI driver does an OUT to the SMI_CMD port with the data in the ACPI_ENABLE field of the

FACP table.
3. The ACPI driver polls the SCI_EN bit until it is sampled as SET.
To transition an ACPI/Legacy platform from the ACPI mode to the Legacy mode the following would occur:
1. ACPI driver checks that the SCI_EN bit is one, and that it is in the ACPI mode.
2. The ACPI driver does an OUT to the SMI_CMD port with the data in the ACPI_DISABLE field of the

FACP table.
3. The ACPI driver polls the SCI_EN bit until it is sampled as RESET.
Platforms that only support ACPI always return a 1 for the SCI_EN bit.

4.7.2.6 Processor Power State Control
ACPI supports placing system processors into one of four power states in the G0 working state. In the C0 state
the designated processor is executing code; in the C1-C3 states it is not.  While in the C0 state, ACPI allows the
performance of the processor to be altered through a defined “throttling” process (the C0 Throttling state in the
diagram below).  Throttling hardware lets the processor execute at a designated performance level relative to its
maximum performance.  The hardware to enter throttling is also described in this section.
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Figure 4-13   Processor Power States

In a working system (global G0 working state) the OS will dynamically transition idle CPUs into the appropriate
power state.  ACPI defines logic on a per-CPU basis that the OS uses to transition between the different
processor power states. This logic is optional, and is described through the FACP table and processor objects
(contained in the hierarchical name space).  The fields and flags within the FACP table describe the symmetrical
features of the hardware, and the processor object contains the location for the particular CPU’s clock logic
(described by the P_BLK register block). The ACPI specification defines four CPU power states for the G0
working state4: C0, C1, C2 and C3.
• In the C0 power state, the processor executes.
• In the C1 power state, the processor is in a low power state where it is able to maintain the context of the

system caches.  This state is supported through a native instruction of the processor (HLT for IA-PC
processors), and assumes no hardware support is needed from the chipset.

• In the C2 power state, the processor is in a low power state where it is able to maintain the context of
system caches. This state is supported through chipset hardware described in this section. The C2 power
state is lower power and has a higher exit latency than the C1 power state.

• In the C3 power state, the processor is in a low power state where it is not necessarily able to maintain
coherency of the processor caches with respect to other system activity (for example, snooping is not
enabled at the CPU complex ). This state is supported through chipset hardware described in this section.
The C3 power state is lower power and has a higher exit latency than the C2 power state.

The P_BLK registers provide optional support for placing the system processors into the C2 or C3 states. The
P_LVL2 register is used to sequence the selected processor into the C2 state, and the P_LVL3 register is used to
sequence the selected processor into the C3 state. Additional support for the C3 state is provided through the bus

                                                          
4 Note that these CPU states map into the G0 (working) state.  The state of the CPU is undefined in the sleeping
state (G3), the Cx states only apply to the G0 state.
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master status and arbiter disable bits (BM_STS in the PM1_STS register and ARB_DIS in the PM2_CNT
register). System software reads the P_LVL2 or P_LVL3 registers to enter the C2 or C3 power state. Hardware
is required to put the processor into the proper clock state precisely on the read operation to the appropriate
P_LVLx register.
Processor power state support is symmetric, all processors in a system are assumed by system software to
support the same clock states. If processors have non-symmetric power state support, then the BIOS will choose
and use the lowest common power states supported by all the processors in the system through the FACP table.
For example, if the P0 processor supports all power states up to and including the C3 state, but the P1 processor
only supports the C1 power state, then the ACPI driver will only place idle processors into the C1 power state
(P0 will never be put into the C2 or C3 power states). Note that either the C1 or C2 power state must be
supported (see the PROC_C1 flag in the FACP table description in section 5.2.5).

4.7.2.6.1 C2 Power State
The C2 state puts the processor into a low power state optimized around multiprocessor (MP) and bus master
systems. The system software will automatically cause an idle processor complex to enter a C2 state if there are
bus masters or MP processors active (which will prevent the OS from placing the processor complex into the C3
state). The processor complex is able to snoop bus master or MP CPU accesses to memory while in the C2 state.
Once the processor complex has been placed into the C2 power state, any interrupt (IRQ or reset) will bring the
processor complex out of the C2 power state.

4.7.2.6.2 C3 Power State
The C3 state puts the designated processor and system into a power state where the processor’s cache context is
maintained, but it is not required to snoop bus master or MP CPU accesses to memory. There are two
mechanisms for supporting the C3 power state:
• Having the OS flush and invalidate the caches prior to entering the C3 state.
• Providing hardware mechanisms to prevent masters from writing to memory (UP only support).
In the first case the OS will flush the system caches prior to entering the C3 state.  As there is normally much
latency associated with flushing processor caches, the ACPI driver is likely to only support this in MP platforms
for idle processors.  Flushing of the cache is through one of the defined ACPI mechanisms (described below,
flushing caches).
In UP only platforms that provide the needed hardware functionality (defined in this section), the ACPI driver
will attempt to place the platform into a mode that will prevent system bus masters from writing into memory
while any processor is in the C3 state.  This is done by disabling bus masters prior to entering a C3 power state.
Upon a bus master requesting an access, the CPU will awaken from the C3 state and re-enable bus master
accesses.
The ACPI driver uses the BM_STS bit to determine which Cx power state to enter.  The BM_STS is an optional
bit that indicates when bus masters are active.  The ACPI driver uses this bit to determine the policy between the
C2 and C3 power states:  lots of bus master activity demotes the CPU power state to the C2 (or C1 if C2 is not
supported), no bus master activity promotes the CPU power state to the C3 power state.  The ACPI driver keeps
a running history of the BM_STS bit to determine CPU power state policy.
The last hardware feature used in the C3 power state is the BM_RLD bit. This bit determines if the Cx power
state is exited based on bus master requests. If set, then the Cx power state is exited upon a request from a bus
master; if reset, the power state is not exited upon bus master requests.  In the C3 state, bus master requests need
to transition the CPU back to the C0 state (as the system is capable of maintaining cache coherency), but such a
transition is not needed for the C2 state.  The ACPI driver can optionally set this bit when using a C3 power
state, and clear it when using a C1-C2 power state.

4.7.2.6.2.1 Flushing Caches
To support the C3 power state without using the ARB_DIS feature, the hardware must provide functionality to
flush and invalidate the processors’ caches (for an IA processor, this would be the WBINVD instruction). To
support the S2 or S3 sleeping states, the hardware must provide functionality to flush the platform caches.
Flushing of caches is supported by one of the following mechanisms:
1. Processor instruction to write-back and invalidate system caches (WBINVD instruction for IA processors).
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2. Processor instruction to write-back but not invalidate system caches (WBINVD instruction for IA
processors and some chipsets with partial support, that is, they don’t invalidate the caches).

3. Manual flush of caches supported by the ACPI driver.
The ACPI specification expects all platforms to support the local CPU instruction for flushing system caches
(with support in both the CPU and chipset), and provides some limited “best effort” support for systems that
don’t currently meet this capability.  The method used by the platform is indicated through the appropriate
FACP fields and flags indicated in this section.
ACPI specifies parameters in the FACP table that describe the system’s cache capabilities. If the platform
properly supports the processor’s write back and invalidate instruction (WBINVD for IA processors), then this
support is indicated to the ACPI driver by setting the WBINVD flag in the FACP table.
If the platform supports the write back and invalidate instruction; however, the cache is only flushed but not
invalidated after its execution, then this support is indicated to the ACPI driver by setting the
WBINVD_FLUSH flag in the FACP table (WBINVD flag would be cleared).
If the platform supports neither of the first two flushing options, then the ACPI driver can attempt to manually
flush the cache if it meets the following criteria:
• A cache-enabled sequential read of contiguous physical memory of not more than 2 Mbytes will flush the

platform caches.
There are two additional FACP fields needed to support manual flushing of the caches:
• FLUSH_SIZE, typically twice the size of the largest cache in the system.
• FLUSH_STRIDE, typically the smallest cache line size in the system.

4.7.2.6.3 Clock Throttling (C0 Power State)
While in the C0 power state, the ACPI driver can generate a policy to run the processor at less than maximum
performance. The clock throttling hardware provides the driver with the functionality  to perform this task. The
logic allows the driver to program a value into a register that represents the % of maximum performance it
desires the processor to execute at. When enabled, the hardware attempts to keep the processor at this minimum
performance level.

duty width

duty value
clock on t ime

clock off  t ime

P _ C N T

duty offset duty width

duty value

Figure 4-14   Throttling Example

The FACP table contains the duty offset and duty width values. The duty offset value determines the offset
within the P_CNT register of the duty value. The duty width value determines the number of used by the duty
value (which determines the granularity of the throttling logic). The performance of the processor by the clock
logic can be expressed with the following equation:

% *Performance
dutysetting

dutywidth=
2

100%
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Equation 1   Duty Cycle Equation

Nominal performance is defined as “close as possible, but not below the indicated performance level.” The
ACPI driver will use the duty offset and duty width to determine how to access the duty setting field. The ACPI
driver will then program the duty setting based on the thermal condition and desired power of the processor
object. The ACPI driver calculates the nominal performance of the processor using the equation expressed in
Equation 1. Note that a dutysetting of zero is reserved.
For example, the clock logic could use the stop grant cycle to emulate a divided processor clock frequency on an
IA processor (through the use of the STPCLK# signal). This signal internally stops the processor’s clock when
asserted LOW. To implement logic that provides eight levels of clock control, the STPCLK# pin could be
asserted as follows (to emulate the different frequency settings):

0 - Reserved Value

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
dutysetting

Duty Width (3-bits)

S
T

P
C

LK
# 

S
ig

na
l

CPU Clock  Runn ing
CPU Clock  Stopped

Figure 4-15   Example Control for the STPCLK#

To start the throttling logic the ACPI driver sets the desired duty setting and then set the THT_EN bit HIGH. To
change the duty setting the OS will first reset the THT_EN bit LOW, write another value to the duty setting field
while preserving the other unused fields of this register, and then set the THT_EN bit HIGH again.
The example logic model is shown below:
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Figure 4-16   ACPI Clock Logic (One per Processor)

An ACPI platform is required to support a single CPU state (besides C0). All of the CPU states occur in the G0
system state; they have no meaning when the system transitions into the sleeping state. ACPI defines the
attributes of the different CPU states (defines four of them). It is up to the platform implementation to map an
appropriate low power CPU state to the defined ACPI CPU state.
ACPI clock control is supported through the processor register block ACPI requires that there be a processor
register block for each CPU in the system. Additionally, ACPI requires that the clock logic for MP systems be
symmetrical; if the P0 processor supports the C1, C2, and C3 states, but P1 only supports the C1 state, then the
ACPI driver will limit all processors to enter the C1 state when idle.
The following sections define the different ACPI CPU states.
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4.7.2.6.4 C0 Power State
This is the executing state for the CPU, in all other CPU power states the CPU is not executing instructions. The
CPU’s clock is running at full frequency or is running at a reduced performance (for more information, see
section 4.7.2.6.3).

4.7.2.6.5 C1 Power State
The C1 CPU low power state is supported through the execution of a CPU instruction that places it into a low
power state (for IA processors this would be the HLT instruction).

4.7.2.6.6 C2 Power State
The C2 power state is an optional ACPI clock state that needs chipset hardware support. This clock logic
consists of a P_LVL2 register that, when read, will cause the processor complex to precisely transition into a C2
power state. In a C2 power state, the processor is assumed capable of keeping its caches coherent, for example,
bus master and MP activity can take place without corrupting cache context. The C2 power state is assumed by
the ACPI driver to have lower power and higher exit latency than the C1 power state.

4.7.2.6.7 C3 Power State
The C3 power state is an optional ACPI feature that needs chipset hardware support. This logic consists of a
P_LVL3 register which, when read, will cause the system to precisely transition into a C3 power state. When the
system is in a C3 power state, the system CPU is assumed to be unable to maintain cache coherency; it is the
responsibility of the OS to place the system into a condition where the caches will not become incoherent with
memory. The ACPI specification provides a standard way for the ACPI driver to disable bus masters that will
guarantee coherency in a uniprocessor (UP) system. In multiprocessor systems, the OS will flush and invalidate
caches prior to entering the C3 state.

4.7.3 Fixed Feature Space Registers
The fixed feature space registers are manipulated directly by the ACPI driver. The following sections describes
fixed features under the programming model. The ACPI driver owns all the fixed resource registers, these
registers are not manipulated by ASL/AML code.  Registers are accessed with any width up to its register width
(byte granular).

4.7.3.1 PM1 Event Grouping
The PM1 Event Grouping has a set of bits that can be distributed between two different register blocks. This
allows these registers to be partitioned between two chips, or all placed in a single chip. Although the bits can be
split between the two register blocks (each register blocks has a unique pointer within the FACP table), the bit
positions is maintained. The register block with unimplemented bits (that is, those implemented in the other
register block) always returns zeros, and writes have no side effects.

4.7.3.1.1 Power Management 1 Status Registers
Register Location: <PM1a_EVT_BLK/PM1b_EVT_BLK> System I/O Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_EVT_LEN/2

The PM1 status registers contains the fixed feature status bits. The bits can be split between two registers:
PM1a_STS or PM1b_STS. Each register grouping can be at a different 32-bit aligned address and is pointed to
by the PM1a_EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the register space are found in
the FACP table. Accesses to the PM1 status registers are done through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the G0 working state this register is cleared by
BIOS prior to setting the SCI_EN bit (and thus passing control to the OS).  For ACPI only platforms (where
SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off state to the G0
working state this register is cleared prior to entering the G0 working state.
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This register contains optional features enabled or disabled within the FACP table.  If the FACP table indicates
that the feature is not supported as a fixed feature, then software treats these bits as ignored.

Table 4-9  PM1 Status Registers Fixed Feature Status Bits

Bit Name Description
0 TMR_STS This is the timer carry status bit. This bit gets set anytime the

23rd/31st bit of a 24/32-bit counter changes (whenever the MSB
changes from low to high or high to low. While TMR_EN and
TMR_STS are set, an interrupt event is raised.

1-3 Reserved Reserved.
4 BM_STS This is the bus master status bit. This bit is set any time a system

bus master requests the system bus, and can only be cleared by
writing a one to this bit position. Note that this bit reflects bus
master activity, not CPU activity (this bit monitors any bus
master that can cause an incoherent cache for a processor in the
C3 state when the bus master performs a memory transaction).

5 GBL_STS This bit is set when an SCI is generated due to the BIOS wanting
the attention of the SCI handler. BIOS will have a control bit
(somewhere within its address space) that will raise an SCI and
set this bit. This bit is set in response to the BIOS releasing
control of the global lock and having seen the pending bit set.

6-7 Reserved Reserved. These bits always return a value of zero.
8 PWRBTN_STS This optional bit is set when the Power Button is pressed. In the

system working state, while PWRBTN_EN and PWRBTN_STS
are both set, an interrupt event is raised. In the sleeping or soft-
off states a wakeup event is generated when the power button is
pressed (regardless of the PWRBTN_EN bit setting). This bit is
only set by hardware and can only be reset by software writing a
one to this bit position.
ACPI defines an optional mechanism for unconditional
transitioning a crashed platform from the G0 working state into
the G2 soft-off state called the power button over-ride.  If the
Power Button is held active for more than four seconds, this bit is
cleared by hardware and the system transitions into the G2/S5
Soft Off state (unconditionally).
Support for the power button is indicated by either the
PWR_BUTTON flag in the FACP table being reset zero.  If the
PWR_BUTTON flag is set HIGH or a power button device
object is present in ACPI name space, than this bit field is treated
as ignored by software.
If the power button was the cause of the wakeup (from an S1-S4
state), then this bit is set prior to returning control to the OS.

9 SLPBTN_STS This optional bit is set when the sleep button is pressed. In the
system working state, while SLPBTN_EN and SLPBTN_STS
are both set, an interrupt event is raised. In the sleeping or soft-
off states a wakeup event is generated when the sleeping button is
pressed and the SLPBTN_EN bit is set. This bit is only set by
hardware and can only be reset by software writing a one to this
bit position.
Support for the sleep button is indicated by either the
SLP_BUTTON flag in the FACP table being reset zero.  If the
SLP_BUTTON flag is set HIGH or a sleep button device object
is present in ACPI name space, than this bit field is treated as
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Bit Name Description
ignored by software.
If the sleep  button was the cause of the wakeup (from an S1-S4
state), then this bit is set prior to returning control to the OS.

10 RTC_STS This optional bit is set when the RTC generates an alarm (asserts
the RTC IRQ signal). Additionally, if the RTC_EN bit is set then
the setting of the RTC_STS bit will generate a power
management event (an SCI, SMI, or resume event). This bit is
only set by hardware and can only be reset by software writing a
one to this bit position.
If the RTC was the cause of the wakeup (from an S1-S3 state),
then this bit is set prior to returning control to the OS.  If the
RTC_S4 flag within the FACP table is set, and the RTC was the
cause of the wakeup from the S4 state), then this bit is set prior to
returning control to the OS.

11 Ignore This bit field is ignored by software.
12-14 Reserved Reserved. These bits always return a value of zero.
15 WAK_STS This bit is set when the system is in the sleeping state and an

enabled wakeup event occurs. Upon setting this bit system will
transition to the working state. This bit is set by hardware and
can only be cleared by software writing a one to this bit position.

4.7.3.1.2 Power Management 1 Enable Registers
Register Location: <PM1a_EVT_BLK/PM1b_EVT_BLK>+PM1_EVT_LEN/2 System I/O Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_EVT_LEN/2

The PM1 enable registers contains the fixed feature enable bits. The bits can be split between two registers:
PM1a_EN or PM1b_EN. Each register grouping can be at a different 32-bit aligned address and is pointed to by
the PM1a_EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the register space are found in the
FACP table. Accesses to the PM1 Enable registers are done through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the G0 working state the enables are cleared by
BIOS prior to setting the SCI_EN bit (and thus passing control to the OS).  For ACPI only platforms (where
SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off state to the G0
working state this register is cleared prior to entering the G0 working state.

This register contains optional features enabled or disabled within the FACP table.  If the FACP table indicates
that the feature is not supported as a fixed feature, then software treats the enable bits as write as zero.

Table 4-10  PM1 Enable Registers Fixed Feature Enable Bits

Bit Name Description
0 TMR_EN This is the timer carry interrupt enable bit. When this bit is set

then an SCI event is generated anytime the TMR_STS bit is set.
When this bit is reset then no interrupt is generated when the
TMR_STS bit is set.

1-4 Reserved Reserved. These bits always return a value of zero.
5 GBL_EN The global enable bit. When both the GBL_EN bit and the

GBL_STS bit are set, an SCI is raised.
6-7 Reserved Reserved.
8 PWRBTN_EN This optional bit is used to enable the setting of the

PWRBTN_STS bit to generate a power management event (SCI
or wakeup). The PWRBTN_STS bit is set anytime the power
button is asserted. The enable bit does not have to be set to
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Bit Name Description
enable the setting of the PWRBTN_STS bit by the assertion of
the power button (see description of the power button hardware).
Support for the power button is indicated by either the
PWR_BUTTON flag in the FACP table being reset zero.  If the
PWR_BUTTON flag is set HIGH or a power button device
object is present in ACPI name space, than this bit field is treated
as ignored by software.

9 SLPBTN_EN This optional bit is used to enable the setting of the
SLPBTN_STS bit to generate a power management event (SCI
or wakeup). The SLPBTN_STS bit is set anytime the sleep
button is asserted. The enable bit does not have to be set to
enable the setting of the SLPBTN_STS bit by the active assertion
of the sleep button (see description of the sleep button hardware).
Support for the sleep button is indicated by either the
SLP_BUTTON flag in the FACP table being reset zero.  If the
SLP_BUTTON flag is set HIGH or a sleep button device object
is present in ACPI name space, than this bit field is treated as
ignored by software.

10 RTC_EN This optional bit is used to enable the setting of the RTC_STS bit
to generate a wakeup event. The RTC_STS bit is set anytime the
RTC generates an alarm.
If the RTC was the cause of the wakeup (from an S1-S3 state),
then this bit is set prior to returning control to the OS.  If the
RTC_S4 flag within the FACP table is set, and the RTC was the
cause of the wakeup from the S4 state), then this bit is set prior to
returning control to the OS.

11-15 Reserved Reserved. These bits always return a value of zero.

4.7.3.2 PM1 Control Grouping
The PM1 Control Grouping has a set of bits that can be distributed between two different registers. This allows
these registers to be partitioned between two chips, or all placed in a single chip. Although the bits can be split
between the two register blocks (each register block has a unique pointer within the FACP table), the bit
positions specified here is maintained. The register block with unimplemented bits (that is, those implemented in
the other register block) returns zeros, and writes have no side effects.

4.7.3.2.1 Power Management 1 Control Registers
Register Location: <PM1a_CNT_BLK/PM1b_CNT_BLK>   System I/O Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_CNT_LEN

The PM1 control registers contains the fixed feature control bits. These bits can be split between two registers:
PM1a_CNT or PM1b_CNT. Each register grouping can be at a different 32-bit aligned address and is pointed to
by the PM1a_CNT_BLK or PM1b_CNT_BLK. The values for these pointers to the register space are found in
the FACP table. Accesses to PM1 control registers are accessed through byte and word accesses.

This register contains optional features enabled or disabled within the FACP table.  If the FACP table indicates
that the feature is not supported as a fixed feature, then software treats these bits as ignored.

Table 4-11   PM1 Control Registers Fixed Feature Control Bits

Bit Name Description
0 SCI_EN Selects the power management event to be either an SCI or SMI

interrupt for the following events. When this bit is set, then
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Bit Name Description
power management events will generate an SCI interrupt.  When
this bit is reset power management events will generate an SMI
interrupt. It is the responsibility of the hardware to set or reset
this bit.  The ACPI driver always preserves this bit position.

1 BM_RLD When set, this bit allows the generation of a bus master request to
cause any processor in the C3 state to transition to the C0 state.
When this bit is reset, the generation of a bus master request does
not effect any processor in the C3 state.

2 GBL_RLS This write-only bit is used by the ACPI software to raise an event
to the BIOS software, that is, generates an SMI to pass execution
control to the BIOS for IA-PC platforms. BIOS software has a
corresponding enable and status bit to control its ability to
receive ACPI events (for example, BIOS_EN and BIOS_STS).
The GBL_RLS bit is set by the ACPI driver to indicate a release
of the global lock and the setting of the pending bit in the FACS
memory structure.

3-8 Reserved Reserved. These bits are reserved by the ACPI driver.
9 Ignore Software ignores this bit field.
10-12 SLP_TYPx Defines the type of sleeping state the system enters when the

SLP_EN bit is set to one. This 3-bit field defines the type of
hardware sleep state the system enters when the SLP_EN bit is
set. The \_Sx object contains 3-bit binary values associated with
the respective sleeping state (as described by the object). The
ACPI driver takes the two values from the \_Sx object and
programs each value into the respective SLP_TYPx field.

13 SLP_EN This is a write-only bit and reads to it always return a zero.
Setting this bit causes the system to sequence into the sleeping
state associated with the SLP_TYPx fields programmed with the
values from the \_Sx object.

14-15 Reserved Reserved. This field always returns zero.

4.7.3.3 Power Management Timer (PM_TMR)
Register Location: <PM_TMR_BLK>   System I/O Space
Default Value: 00h
Attribute: Read-Only
Size: 32-bits

This read-only register returns the current value of the power management timer (PM timer). The FACP table
has a flag called TMR_VAL_EXT that an OEM sets to indicate a 32-bit PM timer or reset to indicate a 24-bit
PM timer. When the last bit of the timer toggles the TMR_STS bit is set. This register is accessed as 32-bits.

This register contains optional features enabled or disabled within the FACP table.  If the FACP table indicates
that the feature is not supported as a fixed feature, then software treats these bits as ignored.

Table 4-12   PM Timer Bits

Bit Name Description
0-23 TMR_VAL This read-only field returns the running count of the power

management timer. This is a 24-bit counter that runs off a
3.579545-MHz clock and counts while in the S0 (working)
system state. The starting value of the timer is undefined, thus
allowing the timer to be reset (or not) by any transition to the S0
state from any other state. The timer is reset (to any initial value),
and then continues counting until the system’s 14.31818 MHz
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Bit Name Description
clock is stopped upon enter its Sx state. If the clock is restarted
without a reset, then the counter will continue counting from
where it stopped.

24-31 E_TMR_VAL This read-only field returns the upper eight bits of a 32-bit power
management timer. If the hardware supports a 32-bit timer, then
this field will return the upper eight bits; if the hardware supports
a 24-bit timer then this field returns all zeros.

4.7.3.4 Power Management 2 Control (PM2_CNT)
Register Location: <PM2_BLK> System I/O
Default Value: 00h
Attribute: Read/Write
Size: PM2_CNT_LEN

This register block is naturally aligned and accessed based on its length. For ACPI 1.0 this register is byte
aligned and accessed as a byte.
This register contains optional features enabled or disabled within the FACP table.  If the FACP table indicates
that the feature is not supported as a fixed feature, then software treats these bits as ignored.

Table 4-13  PM2 Control Register Bits

Bit Name Description
0 ARB_DIS This bit is used to enable and disable the system arbiter. When

this bit is LOW the system arbiter is enabled and the arbiter can
grant the bus to other bus masters. When this bit is HIGH the
system arbiter is disabled and the default CPU has ownership of
the system.
The ACPI driver clears this bit when using the C0, C1 and C2
power states.

1-7 Reserved Reserved.

4.7.3.5 Processor Register Block (P_BLK)
This optional register block is used to control each processor in the system. There is one processor register block
per processor in the system. For more information about controlling processors and control methods that can be
used to control processors, see section 8. This register block is DWORD aligned and the context of this register
block is not maintained across S3 or S4 sleeping states, or the S5 soft-off state.

4.7.3.5.1 Processor Control (P_CNT):  32
Register Location: <P_BLK>   System I/O Space
Default Value: 00h
Attribute: Read/Write
Size: 32-bits

This register is accessed as a DWORD. The CLK_VAL field is where the duty setting of the throttling hardware
is programmed as described by the DUTY_WIDTH and DUTY_OFFSET values in the FACP table.  Software
treats all other CLK_VAL bits as ignored (those not used by the duty setting value).

Table 4-14  Processor Control Register Bits

Bit Name Description
0-3 CLK_VAL Possible locations for the clock throttling value.
4 THT_EN This bit enables clock throttling of the clock as set in the

CLK_VAL field.  THT_EN bit must be reset LOW when
changing the CLK_VAL field (changing the duty setting).

5-31 CLK_VAL Possible locations for the clock throttling value.
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4.7.3.5.2 Processor LVL2 Register (P_LVL2):  8
Register Location: <P_BLK>+4 System   I/O Space
Default Value: 00h
Attribute: Read-Only
Size: 8-bits

This register is accessed as a byte.

Table 4-15  Processor LVL2 Register Bits

Bit Name Description
0-7 P_LVL2 Reads to this register return all zeros, writes to this register have

no effect. Reads to this register also generate a “enter a C2 power
state” to the clock control logic.

4.7.3.5.3 Processor LVL3 Register (P_LVL3):  8
Register Location: <P_BLK>+5h   System I/O Space
Default Value: 00h
Attribute: Read-Only
Size: 8-bits

This register is accessed as a byte.

Table 4-16  Processor LVL3 Register Bits

Bit Name Description
0-7 P_LVL3 Reads to this register return all zeros, writes to this register have

no effect. Reads to this register also generate a “enter a C3 power
state” to the clock control logic.

4.7.4 Generic Address Space
ACPI provides a mechanism that allows a unique piece of “value added” hardware to be described to the ACPI
driver in ACPI name space. There are a number of rules to be followed when designing ACPI-compatible
hardware.
Programming bits can reside in any of the defined generic address spaces (system I/O, system memory, PCI
configuration, embedded controller, or SMBus), but the top-level event bits are contained in the general-purpose
registers. The general-purpose registers are pointed to by the GP_REG block, and the generic register space can
be any of the defined ACPI address spaces. A device’s generic address space programming model is described
through an associated object in the ACPI name space, which specifies the bit’s function, location, address space,
and address location.
The programming model for devices is normally broken into status and control functions. Status bits are used to
generate an event that allows the ACPI driver to call a control method associated with the pending status bit.
The called control method can then control the hardware by manipulating the hardware control bits or by
investigating child status bits and calling their respective control methods. ACPI requires that the top level
“parent” event status and enable bits reside in either the GPE0_STS or GPE1_STS registers, and “child” event
status bits can reside in generic address space.
The example below illustrates some of these concepts. The top diagram shows how the logic is partitioned into
two chips: a chipset  and an embedded controller.

• The chipset contains the interrupt logic, performs the power button (which is part of the fixed register space,
and is not discussed here), the lid switch (used in portables to indicate when the clam shell lid is open or
closed), and the RI# function (which can be used to awaken a sleeping system).

• The embedded controller chip is used to perform the AC power detect and dock/undock event logic.
Additionally, the embedded controller supports some system management functions using an OS-
transparent interrupt in the embedded controller (represented by the EXTSMI# signal).
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Figure 4-17   Example of General-Purpose vs Generic Address Space Events

At the top level, the generic events in the GPEx_STS register are the:
• Embedded controller interrupt, which contains two query events: one for AC detection and one for docking

(the docking query event has a child interrupt status bit in the docking chip).
• Ring indicate status (used for awakening the system).
• Lid status.
The embedded controller event status bit (EC_STS) is used to indicate that one of two query events are active.
• A query event is generated when the AC# signal is asserted. The embedded controller returns a query value

of 34 (any byte number can be used) upon a query command in response to this event; the ACPI driver will
then schedule for execution the control method associated with query value 34.

• Another query event is for the docking chip that generates a docking event. In this case, the embedded
controller will return a query value of 35 upon a query command from system software responding to an
SCI from the embedded controller. The ACPI driver will then schedule the control method associated with
the query value of 35 to be executed, which services the docking event.

For each of the status bits in the GPEx_STS  register, there is a corresponding enable bit in the GPEx_EN
register. Note that the child status bits do not necessarily need enable bits (see the DOCK_STS bit).
The lid logic contains a control bit to determine if its status bit is set when the LID is open (LID_POL is HIGH
and LID is HIGH) or closed (LID_POL is LOW and LID is LOW).  This control bit resides in generic I/O space
(in this case, bit 2 of system I/O space 33h) and would be manipulated with a control method associated with the
lid object.
As with fixed events, the ACPI driver will clear the status bits in the GPEx register blocks. However, AML code
clears all sibling status bits in generic space.
Generic features are controlled by OEM supplied control methods, encoded in AML. ACPI provides both an
event and control model for development of these features. The ACPI specification also provides specific
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control methods for notifying the OS of certain power management and Plug and Play events.  Review section 5
to understand the types of hardware functionality that supports the different types of subsystems. The following
is a list of features supported by APCI; however, the list is not intended to be complete or comprehensive:
• Device insertion/ejection (for example, docking, device bay, A/C adapter)
• Batteries5

• Platform thermal subsystem
• Turning on/off power resources
• Mobile lid Interface
• Embedded controller
• System indicators
• OEM-specific wakeup events
• Plug and Play configuration

4.7.4.1 General-Purpose Register Blocks
ACPI supports up to two general-purpose register blocks.  Each register block contains two registers: an enable
and a status register.  Each register block is 32-bit aligned.  Each register in the block is accessed as a byte.  It is
up to the specific design to determine if these bits retain their context across sleeping or soft-off states.  If they
lose their context across a sleeping or soft-off state, then BIOS resets the respective enable bit prior to passing
control to the operating system upon awakening.

4.7.4.1.1 General-Purpose Event 0 Register Block
This register block consists of two registers:  The GPE0_STS and the GPE0_EN registers.  Each register’s
length is defined to be half the length of the GPE0 register block, and is described in the ACPI FACP table’s
GPE0_BLK and GPE0_BLK_LEN operators.  The ACPI driver owns the general-purpose event resources and
these bits are only manipulated by the ACPI driver;  ASL/AML code can not access the general-purpose event
registers.
It is envisioned that chipsets will contain GPE event registers that provide GPE input pins for various events.
The platform designer would then wire the GPEs to the various value added event hardware and the AML/ASL
code would describe to the OS how to utilize these events.  As such, there will be the case where a platform has
GPE events that are not wired to anything (they are present in the chip set), but are not utilized by the platform
and have no associated ASL/AML code.  In such, cases these event pins are to be tied inactive such that the
corresponding SCI status bit in the GPE register is not set by a floating input pin.

4.7.4.1.1.1 General-Purpose Event 0 Status Register
Register Location: <GPE0_STS> System I/O Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general-purpose event 0 status register contains the general-purpose event status bits in bank zero of the
general-purpose registers. Each available status bit in this register corresponds to the bit with the same bit
position in the GPE0_EN register.  Each available status bit in this register is set when the event is active, and
can only be cleared by software writing a one to its respective bit position.  For the general-purpose event
registers, unimplemented bits are ignored by the OS.
Each status bit can optionally wake up the system if asserted when the system is in a sleeping state with its
respective enable bit set.  The ACPI driver accesses GPE registers through byte accesses (regardless of their
length).

                                                          
5 ACPI OS’s assume the use of the Duracell/Intel defined standard for batteries, called the “Smart Battery
Specification” (SBS).  ACPI provides a set of control methods for use by OEMs that use a proprietary “control
method” battery interface.
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4.7.4.1.1.2 General-Purpose Event 0 Enable Register
Register Location: <GPE0_EN> System I/O Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general-purpose event 0 enable register contains the general-purpose event enable bits.   Each available
enable bit in this register corresponds to the bit with the same bit position in the GPE0_STS register.  The
enable bits work similar to how the enable bits in the fixed-event registers are defined:  When the enable bit is
set, then a set status bit in the corresponding status bit will generate an SCI bit.  The ACPI driver accesses GPE
registers through byte accesses (regardless of their length).

4.7.4.1.2 General-Purpose Event 1 Register Block
This register block consists of two registers:  The GPE1_STS and the GPE1_EN registers.  Each register’s
length is defined to be half the length of the GPE1 register block, and is described in the ACPI FACP table’s
GPE1_BLK and GPE1_BLK_LEN operators.

4.7.4.1.2.1 General-Purpose Event 1 Status Register
Register Location: <GPE1_STS> System I/O Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general -purpose event 1 status register contains the general-purpose event status bits. Each available status
bit in this register corresponds to the bit with the same bit position in the GPE1_EN register.  Each available
status bit in this register is set when the event is active, and can only be cleared by software writing a one to its
respective bit position.  For the general-purpose event registers, unimplemented bits are ignored by the operating
system.
Each status bit can optionally wakeup the system if asserted when the system is in a sleeping state with its
respective enable bit set.
The ACPI driver accesses GPE registers through byte accesses (regardless of their length).

4.7.4.1.2.2 General-Purpose Event 1 Enable Register
Register Location: <GPE1_EN> System I/O Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general-purpose event 1 enable register contains the general-purpose event enable.   Each available enable
bit in this register corresponds to the bit with the same bit position in the GPE1_STS register.  The enable bits
work similar to how the enable bits in the fixed-event registers are defined:  When the enable bit is set, a set
status bit in the corresponding status bit will generate an SCI bit.
The ACPI driver accesses GPE registers through byte accesses (regardless of their length).

4.7.4.2 Example Generic Devices
This section points out generic devices with specific ACPI driver support.

4.7.4.2.1 Lid Switch
The Lid switch is an optional feature present in most “clam shell” style mobile computers.  It can be used by the
operating system as policy input for sleeping the system, or for waking up the system from a sleeping state.  If
used, then the OEM needs to define the lid switch as a device with an _HID object value of  “_PNP0C0D”,
which identifies this device as the lid switch to the ACPI driver. The Lid device needs to contain a control
method that returns its status. The Lid event handler AML code re-configures the lid hardware (if it needs to) to
generate an event in the other direction, clear the status, and then notify the OS of the event.
Example hardware and ASL code is shown below for such a design.
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Figure 4-18  Example Generic Address Space Lid Switch Logic

This logic will set the Lid status bit when the button is pressed or released (depending on the LID_POL bit).
The ASL code defines the following:
• An operational region where the control and status bits reside in address space.

• System address space in registers 0x201 (control) and 0x202 (status).
• A field operator to allow AML code to access these bits:

• Polarity control bit (LID_POL) is called LPOL and is accessed at 0x200.0.
• Status bit (LID_STS) is called LSTS and is accessed at 0x200.1.

• Creates a device called “\LID” with the following:
• A Plug and Play identifier “PNP0C0D” that associates the ACPI driver with this object.
• The status control method that returns the state of the Lid’s status bit.

• The lid switch event handler that does the following:
• Defines the lid’s status bit (LidS) as a child of the general-purpose event 0 register bit 1.
• Defines the event handler for the lid (only event handler on this status bit) that does the following:

• Clears the lid status (write 1 to LidS bit).
• Flips the polarity of the LPOL bit (to cause the event to be generated on the opposite

condition).
• Generates a notify to the operating system that does the following:

• Passes the \LID object.
• Indicates a device specific event (notify value 0x80).

// Define a Lid switch
OperationRegion(\Pho, SystemIO, 0x201, 0x1)
Field(\Pho, ByteAcc, NoLock, Preserve) {

LPOL, 1 //  Lid polarity control bit
}

Device(\_SB.LID){
Name(_HID, EISAID(“PNP0C0D”))
Method(_LID){Return(LPOL)}
Name(_PRW, Package(2){

1, // bit 1 of GPE to enable Lid wakeup
\_S4}) // can wakeup from S4 state
}

}
Scope(\_GPE){ // Root level event handlers

Method(_L01){ // uses bit 1 of GP0_STS register
Not(LPOL, LPOL) // Flip the lid polarity bit
Notify(LID, 0x80) // Notify OS of event
}

}

At the top level, the generic events in the GPEx_STS register are:
• Embedded controller interrupt, which contains two query events: one for AC detection and one for docking

(the docking query event has a child interrupt status bit in the docking chip).
• Ring indicate status (used for awakening the system).
• Lid status.

The embedded controller event status bit (EC_STS) is used to indicate that one of two query events are active.
• A query event is generated when the AC# signal is asserted. The embedded controller returns a query value

of 34 (any byte number can be used) upon a query command in response to this event; the ACPI driver will
then schedule for execution the control method associated with query value 34.



Advanced Configuration and Power Management Interface Specification 4-70

Intel/Microsoft/Toshiba

• Another query event is for the docking chip which generates a docking event. In this case, the embedded
controller will return a query value of 35 upon a query command from system software responding to an
SCI from the embedded controller. The ACPI driver will then schedule the control method associated with
the query value of 35 to be executed, which services the docking event.

For each of the status bits in the GPEx_STS register, there is a corresponding enable bit in the GPEx_EN
register. Note that the child status bits do not necessarily need enable bits (see the DOCK_STS bit).

The lid logic contains a control bit to determine if its status bit is set when the LID is open (LID_POL is HIGH
and LID is HIGH) or closed (LID_POL is LOW and LID is LOW). This control bit resides in generic I/O space
(in this case, bit 2 of system I/O space 33h) and would be manipulated with a control method associated with the
lid object.

As with fixed events, the ACPI driver will clear the status bits in the GPEx register blocks. However, AML code
is required to clear all sibling status bits in generic space.

Generic features are controlled by OEM supplied AML code. ACPI provides both an event and control model
for development of these features. The ACPI specification also provides specific control methods for notifying
the OS of certain power management and Plug and Play events. Review section 5 to understand what types of
hardware hooks are required to support the different types of subsystems. The following is a list of features
supported by APCI, however the list is not intended to be complete or comprehensive:
• Device insertion/ejection (e.g. docking, device bay, A/C adapter)
• Batteries6

• Platform thermal subsystem
• Turning on/off power resources
• Mobile lid interface
• Embedded controller
• System indicators
• OEM-specific wake-up events
• Plug and Play configuration

4.7.4.3 General-Purpose Register Blocks
ACPI supports up to two general purpose register blocks. Each register block contains two registers: an enable
and a status register. Each register block is 32-bit aligned. Each register in the block is accessed according to its
length (block length divided by two). It is up to the specific design to determine if these bits retain their context
across sleeping or soft off states. If bits lose their context across a sleeping or soft off state, then BIOS should
reset the respective enable bit prior to passing control to the operating system upon awakening.

4.7.4.3.1 General Purpose Event 0 Register Block
This register block consists of two registers: the GPE0_STS and the GPE0_EN registers. Each register’s length
is defined to be half the length of the GPE0 register block, and is described in the ACPI FACP table’s
GPE0_BLK and GPE0_BLK_LEN operators. The ACPI driver owns the General purpose event resources and
these bits are only manipulated by the ACPI driver;  ASL/AML code can not access the general purpose event
registers.
It is envisioned that chipsets will contain GPE event registers that provide GPE input pins for various events.
The platform designer would then wire the GPEs to the various value added event hardware and the AML/ASL
code would describe to the OS how to utilize these events.  As such there will be the case where a platform has
GPE events that are not wired to anything (they are present in the chipset, however not utilized by the platform
and have no associated ASL/AML code.  In such cases these event pins are to be tied inactive such that the
corresponding SCI status bit in the GPE register is not set by a floating input pin.

                                                          
6 ACPI OS’s assume the use of the Duracell/Intel defined standard for batteries, called the “Smart Battery
Specification” (SBS).  ACPI provides a set of control methods for use by OEMs that use a proprietary “control
method” battery interface.
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4.7.4.3.2 General Purpose Event 0 Status Register
Register Location: <GPE0_STS>   System I/O Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general purpose event 0 status register contains the general purpose event status bits in bank 0 of the general
purpose registers. Each available status bit in this register corresponds to the bit with the same bit position in the
GPE0_EN register. Each available status bit in this register should be set when the event is active, and can only
be cleared by software writing a one to its respective bit position. For the general purpose event registers,
unimplemented bits are ignored by the operating system.
Each status bit can optionally wake up the system if asserted when the system is in a sleeping state with its
respective enable bit set.

4.7.4.3.2.1 General Purpose Event 0 Enable Register
Register Location: <GPE0_EN>   System I/O Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general purpose event 0 enable register contains the general purpose event enable bits in bank 0 of the
general purpose registers. Each available enable bit in this register corresponds to the bit with the same bit
position in the GPE0_STS register. The enable bits work similar to how the enable bits in the fixed event
registers are defined: When the enable bit is set, then a set status bit in the corresponding status bit will generate
an SCI bit.

4.7.4.3.3 General Purpose Event 1 Register Block
This register block consists of two registers: the GPE1_STS and the GPE1_EN registers. Each register’s length
is defined to be half the length of the GPE1 register block, and is described in the ACPI FACP table’s
GPE1_BLK and GPE1_BLK_LEN operators.

4.7.4.3.3.1 General Purpose Event 1 Status Register
Register Location: <GPE1_STS>   System I/O Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general purpose event 1 status register contains the general purpose event status bits in bank 0 of the general
purpose registers. Each available status bit in this register corresponds to the bit with the same bit position in the
GPE1_EN register. Each available status bit in this register should be set when the event is active, and can only
be cleared by software writing a one to its respective bit position. For the general purpose event registers,
unimplemented bits are ignored by the operating system.
Each status bit can optionally wake-up the system if asserted when the system is in a sleeping state with its
respective enable bit set.
The ACPI driver accesses GPE registers through byte accesses (regardless of their length).

4.7.4.3.3.2 General Purpose Event 1 Enable Register
Register Location: <GPE1_EN> System I/O Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general purpose event 1 enable register contains the general purpose event enable bits in bank 0 of the
general purpose registers. Each available enable bit in this register corresponds to the bit with the same bit
position in the GPE1_STS register. The enable bits work similar to how the enable bits in the fixed event
registers are defined: When the enable bit is set, then a set status bit in the corresponding status bit will generate
an SCI bit.
The ACPI driver accesses GPE registers through byte accesses (regardless of their length).
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4.7.4.4 Specific Generic Devices
This section points out generic devices with specific ACPI driver support.

4.7.4.4.1 Lid Switch
The Lid switch is an optional feature present in most “clam shell” style mobile computers.  It can be used by the
operating system as policy input for sleeping the system, or for waking up the system from a sleeping state.  If
used, then the OEM needs to define the lid switch as a device with an _HID object value of “_PNP0C0D”,
which identifies this device as the lid switch to the ACPI driver. The Lid device needs to contain a control
method that returns its status. The Lid event handler AML code re-configures the lid hardware (if it needs to) to
generate an event in the other direction, clear the status, and then notify the OS of the event.
Example hardware and ASL code is shown below for such a design.
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Figure 4-19   Example Generic Address Space Lid Switch Logic

This logic will set the Lid status bit when the button is pressed or released (depending on the LID_POL bit).
The ASL code defines the following:
• An operational region where the control and status bits reside in address space.

• System address space in registers 0x201 (control) and 0x202 (status).
• A field operator to allow AML code to access these bits:

• Polarity control bit (LID_POL) is called LPOL and is accessed at 0x200.0
• Status bit (LID_STS) is called LSTS and is accessed at 0x200.1

• Creates a device called “\LID” with
• A plug and play identifier “PNP0C0D” which associates the ACPI driver with this object
• The status control method which returns the state of the Lid’s status bit

• The lid switch event handler which
• Defines the lid’s status bit (LidS) as a child of the general purpose event 0 register bit 1.
• Defines the event handler for the lid (only event handler on this status bit) which:

• Clears the lid status (write 1 to LidS bit)
• Flips the polarity of the LPOL bit (to cause the event to be generated on the opposite

condition)
• Generates a notify to the operating system which

• Passes the \LID object
• Indicates a device specific event (notify value 0x80)
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// Define a Lid switch
OperationRegion(\Pho, SystemIO, 0x201, 0x1)
Field(\Pho, ByteAcc, NoLock, Preserve) {

LPOL, 1, //  Lid polarity control bit
}

Device(\LID) {
Name(_HID, EISAID(“PNP0C0D”))
Method(_LID) {Return(LPOL)}
Name(_PRW, Package(2) {

One, // bit 1 of GPE to enable Lid wake-up
\_S4}) // can wake-up from S4 state

}
Scope(\GPE) // Root level event handlers

Method(L001) { // uses bit 1 of GP0_STS register
Not(LPOL, LPOL) // Flip the lid polarity bit
Notify(\LID, 0x80) // Notify OS of event

}

4.7.4.4.2 Embedded Controller
ACPI provides a standard interface that enables AML code to define and access generic logic in “embedded
controller space”.  This supports current computer models where much of the value added hardware is contained
within the embedded controller while allowing the AML code to access this hardware in an abstracted fashion.
The embedded controller is defined as a device and must contain a set number of control methods:

_HID with a value of PNP0A09 to associate this device with the ACPI’s embedded controller’s driver.
_CRS to return the resources being consumed by the embedded controller.
_GPE that returns the general purpose event bit that this embedded controller is wired to.

Additionally the embedded controller can support up to 255 generic events per embedded controller, referred to
as query events.  These query event handles are defined within the embedded controller’s device as control
methods.  An example of defining an embedded controller device is shown below:

Device(\_EC0) {
// PnP ID
Name(_HID, EISAID(PNP0C09))
// Returns the “Current Resources” of EC
Name(_CRS, Buffer(){ 0x4B, 0x62, 0, 1, 0x4B,

0x66, 0, 1, 0x79, 0 })
// Define that the EC SCI is bit 0 of the GP_STS register
Name(_GPE, 0) // embedded controller is wired to bit 0 of GPE

OperationRegion(\EC0, EmbeddedControl, 0, 0xFF)
Field(\EC0, AnyAcc, Lock, Preserve) {

// Field definitions
}

Method(Q00){..}
Method(QFF){..}

}

For more information on the embedded controller see section 13.

4.7.4.4.3 Fan
ACPI has a device driver to control fans (active cooling devices) in platforms.  A fan is defined as a device with
the Plug and Play ID of “PNP0C0B”.  It should then contain a list power resources used to control the FAN.
For more information, see section 10.
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5. ACPI Software Programming Model
ACPI defines a hardware register interface that an ACPI-compatible OS uses to control core power
management features of a machine, as described in section 4. ACPI also provides an abstract interface for
controlling the power management and configuration of an ACPI system. Finally, ACPI defines an interface
between an ACPI-compatible OS and the system BIOS.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tables to describe system
information, features, and methods for controlling those features. These tables list devices on the system
board or devices that cannot be detected or power managed using some other hardware standard, plus their
capabilities as described in section 3. They also list system capabilities such as the sleeping power states
supported, a description of the power planes and clock sources available in the system, batteries, system
indicator lights, and so on. This enables the ACPI driver to control system devices without needing to know
how the system controls are implemented.
Topics covered in this section are:
• The ACPI system description table architecture is defined, and the role of OEM-provided definition

blocks in that architecture is discussed.
• The concept of ACPI name space is discussed.

5.1 Overview of the System Description Table Architecture
The Root System Description Pointer structure is located in the system’s memory address space and is setup
by the BIOS. This structure contains the address of the Root System Description Table, which references
other Description Tables that provide data to the OS, supplying it with knowledge of the base system’s
implementation and configuration (see Figure 5-1).

Located in memory space (0 - 4G)

Root  System
Descript ion Table

Header

RSDT

Entry

Entry

...

Entry

...

In low memory space on
16 byte boundry

Root  System
Description Pointer

RSD PTR

Pointer Header

Si g

 contents

Header

Si g

 contents

Figure 5-1   Root System Description Pointer and Table

All description tables start with identical headers. The primary purpose of the description tables is to define
for the OS various industry-standard implementation details. Such definitions enable various portions of
these implementations to be flexible in hardware requirements and design, yet still provide the OS with the
knowledge it needs to control hardware directly.

The Root System Description Table (“RSDT”) points to other tables in memory. Always the first table, it
points to the Fixed ACPI Description table (“FACP”). The data within this table includes various fixed-
length entries that describe the fixed ACPI features of the hardware. The FACP table always refers to the
Differentiated System Description Table (“DSDT”), which contains information and descriptions for
various system features. The relationships between these tables is shown in Figure 5-2.
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Figure 5-2   Description Table Structures

The OS searches the following physical ranges on 16-byte boundaries for a Root System Description
Pointer structure. This structure is located by searching the areas listed below for a valid signature and
checksum match:
• The first 1K of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can be

found in the two-byte location 40:0Eh on the BIOS data area.
• In the BIOS read-only memory space between 0E0000h and 0FFFFFh.

When the OS locates the structure, it looks at the physical system address for the Root Description Table.
The Root System Description Table starts with the signature ‘RSDT’ and contains one or more physical
pointers to other System Description Tables that provide various information on other standards defined on
the current system. As shown in Figure 5-1, there is always a physical address in the Root System
Description Table for the Fixed ACPI Description table (FACP).

When the OS follows a physical pointer to another table, it examines each table for a known signature.
Based on the signature, the OS can then interpret the implementation-specific data within the description
table.

The purpose of the FACP is to define various static system information regarding power management.  The
Fixed ACPI Description Table starts with the “FACP” signature. The FACP describes the implementation
and configuration details of the ACPI hardware registers on the platform.

For a specification of the ACPI Hardware Register Blocks (PM1a_EVT_BLK, PM1b_EVT_BLK,
PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, PM_TMR_BLK, GP0_BLK, GP1_BLK, and one
or more P_BLKs), see section 4.7. The PM1a_EVT_BLK, PM1b_EVT_BLK, PM1a_CNT_BLK,
PM1b_CNT_BLK, PM2_CNT_BLK, and PM_TMR_BLK blocks are for controlling low-level ACPI
system functions.
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The GP0_BLK and GP1_BLK blocks provide the foundation for an interrupt processing model for Control
Methods. The P_BLKs blocks are for controlling processor features.

Besides ACPI Hardware Register implementation information, the FACP also contains a physical pointer to
the Differentiated System Description Table (“DSDT”). The DSDT contains a Definition Block named the
Differentiated Definition Block for the DSDT that contains  implementation and configuration information
the OS can use to perform power management, thermal management, or Plug and Play functionality that
goes beyond the information described by the ACPI hardware registers.

A Definition Block contains information about hardware implementation details in the form of a
hierarchical name space, data, and control methods encoded in AML. The OS “loads” or “unloads” an
entire definition block as a logical unit. The Differentiated Definition Block is always loaded by the OS at
boot time and cannot be unloaded.

Definition Blocks can either define new system attributes or, in some cases, build on prior definitions. A
Definition Block can be loaded from system memory address space. One use of a Definition Block is to
describe and distribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to the
ACPI-compatible OS while confining the variations to reasonable boundaries. Definition blocks enable
simple platform implementations to be expressed by using a few well-defined object names. In theory, it
might be possible to define a PCI configuration space-like access method within a Definition Block, by
building it from IO space, but that is not the goal of the Definition Block specification. Such a space is
usually defined as a “built in” operator.

Some operators perform simple functions and others encompass complex functions. The power of the
Definition Block comes from its ability to allow these operations to be glued together in numerous ways, to
provide functionality to the OS. The operators present are intended to allow many useful hardware designs
to be ACPI-expressed, not to allow all hardware design to be expressed.

5.2 Description Table Specifications
This section specifies the structure of the system description tables:
• Root System Description Pointer
• System Description Table Header
• Root System Description Table
• Fixed ACPI Description Table
• Firmware ACPI Control Structure
• Differentiated System Description Table
• Secondary System Description Table
• Persistent System Description Table
• Multiple APIC Description Table
• Smart Battery Table

All numeric values from the above tables, blocks, and structures are always encoded in little endian format.
Signature values are stored as fixed-length strings.

5.2.1 Reserved Bits and Fields
For future expansion, all data items marked as reserved in this specification have strict meanings. This
section lists software requirements for reserved fields. Note that the list contains terms such as ACPI tables
and AML code defined later in this section of the specification.

5.2.1.1 Reserved Bits and Software Components
• OEM implementations of software and AML code return the bit value of 0 for all reserved bits in ACPI

tables or in other software values, such as resource descriptors.
• ACPI driver implementations, for all reserved bits in ACPI tables and in other software values:
• Ignore all reserved bits that are read.
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• Preserve reserved bit values of read/write data items (for example, the driver writes back reserved bit
values it reads).

• Write zeros to reserved bits in write-only data items.

5.2.1.2 Reserved Values and Software Components
• OEM implementations of software and AML code return only defined values and do not return

reserved values.
• ACPI driver implementations write only defined values and do not write reserved values.

5.2.1.3 Reserved Hardware Bits and Software Components
• Software ignores all reserved bits read from hardware enable or status registers.
• Software writes zero to all reserved bits in hardware enable registers.
• Software ignores all reserved bits read from hardware control and status registers.
• Software preserves the value of all reserved bits in hardware control registers by writing back read

values.

5.2.1.4 Ignored Hardware Bits and Software Components
• Software handles ignored bits in ACPI hardware registers the same way it handles reserved bits in these

same types of registers.

5.2.2 Root System Description Pointer
The OS searches the following physical ranges on 16-byte boundaries for a Root System Description
Pointer. This table is located by searching the areas listed below for a valid Root System Description
Pointer structure signature and checksum match. When the operating system locates the Root System
Description Pointer structure, it looks at the supplied physical system address for the Root System
Description Table:
• The first 1K of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can be

found in the two-byte location 40:0Eh on the BIOS data area.
• In the BIOS read-only memory space between 0E0000h and 0FFFFFh.

Table 5-1  Root System Description Pointer Structure

Field Byte
Length

Byte
Offset

Description

Signature 8 0 “RSD PTR ”
Checksum 1 8 The entire Root System Description Pointer structure, including

the checksum field, must add to zero to be considered valid.
OEMID 6 9 An OEM-supplied string that identifies the OEM.
Reserved 1 15 Must be zero.
RsdtAddress 4 16 Physical address of the Root System Description Table.

5.2.3 System Description Table Header
All description tables begin with the structure shown in Table 5-2. The content of the system description
table is determined by the Signature field. System Description Table signatures defined by this specification
are listed in Table 5-3.

Table 5-2  DESCRIPTION_HEADER Fields

Field Byte
Length

Byte
Offset

Description

Signature 4 0 The ASCII string representation of the table identifier.
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Field Byte
Length

Byte
Offset

Description

Length 4 4 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

Revision 1 8 The revision of the structure corresponding to the signature field
for this table.  Larger revision numbers are backwards
compatible to lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero
to be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.
OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify the

particular data table. This field is particularly useful when
defining a definition block to distinguish definition block
functions. The OEM assigns each dissimilar table a new OEM
Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are
assumed to be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table.  For the DSDT,
RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.

Creator Revision 4 32 Revision of utility that created the table.  For the DSDT, RSDT,
SSDT, PSDT tables, this is the revision for the ASL Compiler.

For OEMs, good design practices will ensure consistency when assigning OEMID and OEM Table ID
fields in any table. The intent of these fields is to allow for a binary control system that support services can
use. Because many support functions can be automated, it is useful when a tool can programmatically
determine which table release is a compatible and more recent revision of a prior table on the same OEMID
and OEM Table ID.

Table 5-3 contains the Description Table signatures defined by this specification.

Table 5-3   DESCRIPTION_HEADER Signatures

Signature Description
“APIC” Multiple APIC Description Table. See section  5.2.8.
“DSDT” Differentiated System Description Table. See section 5.2.7.1.
”FACP” Fixed ACPI Description Table. See section 5.2.5.
“FACS” Firmware ACPI Control Structure. See section 5.2.6.
“PSDT” Persistent System Description Table. See section 5.2.7.3.
“RSDT” Root System Description Table. See section 5.2.4.
“SSDT” Secondary System Description Table. See section 5.2.7.2.
“SBST” Smart Battery Specification Table.  See section 5.2.9

5.2.4 Root System Description Table
The OS locates that Root System Description Table by following the pointer in the Root System
Description Pointer structure. The Root System Description Table, shown in Table 5-4, starts with the
signature ‘RSDT,’ followed by an array of physical pointers to other System Description Tables that
provide various information on other standards defined on the current system. The OS examines each table
for a known signature. Based on the signature, the OS can then interpret the implementation-specific data
within the table.
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Table 5-4   Root System Description Table Fields

Field Byte
Length

Byte
Offset

Description

Header
    Signature 4 0 ‘RSDT’.  Signature for the Root System Description Table.
    Length 4 4 Length, in bytes, of the entire Root System Description

Table. The length implies the number of Entry  fields at the
end of the table.

    Revision 1 8 1
    Checksum 1 9 Entire table must sum to zero.
    OEMID 6 10 OEM ID.
    OEM Table ID 8 16 For the Root System Description Table, the table ID is the

manufacture model ID.
    OEM Revision 4 24 OEM revision of RSDT table for supplied OEM Table ID.
    Creator ID 4 28 Vendor ID of utility that created the table.  For the DSDT,

RSDT, SSDT, PSDT tables, this is the ID for the ASL
Compiler.

    Creator Revision 4 32 Revision of utility that created the table.  For the DSDT,
RSDT, SSDT, and PSDT tables, this is the revision for the
ASL Compiler.

Entry 4*n 36 An array of physical addresses that point to other
DESCRIPTION_HEADERs. The OS assumes at least the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its Length field.

5.2.5 Fixed ACPI Description Table
The Fixed ACPI Description Table defines various fixed ACPI information vital to an ACPI-compatible
OS, such as the base address for the following hardware registers blocks: PM1a_EVT_BLK,
PM1b_EVT_BLK, PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, PM_TMP_BLK,
GPE0_BLK, and GPE1_BLK.

The Fixed ACPI Description Table also has a pointer to the Differentiated System Description Table that
contains the Differentiated Definition Block, which in turn provides variable information to an ACPI-
compatible OS concerning the base system design.

Table 5-5  Fixed ACPI Description Table Format

Field Byte
Length

Byte
Offset

Description

Header
    Signature 4 0 ‘FACP’. Signature for the Fixed ACPI Description Table.
    Length 4 4 Length, in bytes, of the entire Fixed ACPI Description

Table.
    Revision 1 8 1
    Checksum 1 9 Entire table must sum to zero.
    OEMID 6 10 OEM ID.
    OEM Table ID 8 16 For the Fixed ACPI Description Table, the table ID is the

manufacture model ID.
    OEM Revision 4 24 OEM revision of FACP table for supplied OEM Table ID.
    Creator ID 4 28 Vendor ID of utility that created the table.  For the DSDT,

RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.
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Field Byte
Length

Byte
Offset

Description

    Creator Revision 4 32 Revision of utility that created the table.  For the DSDT,
RSDT, SSDT, PSDT tables, this is the revision for the ASL
Compiler.

FIRMWARE_CTRL 4 36 Physical memory address (0-4 GB) of the Firmware ACPI
Control Structure, where the OS and Firmware exchange
control information. See section 5.2.6 for a description of
the Firmware ACPI Control Structure.

DSDT 4 40 Physical memory address (0-4 GB) of the Differentiated
System Description Table.

INT_MODEL 1 44 The interrupt mode of the ACPI description. The SCI vector
and Plug and Play interrupt information assume some
interrupt controller implementation model for which the OS
must also provide support.  This value represents the
interrupt model being assumed in the ACPI description of
the OS. This value therefore represents the interrupt model.
This value is not allowed to change for a given machine,
even across reboots.
0 Dual PIC, industry standard PC-AT type

implementation with 0-15 IRQs with EISA edge-
level-control register.

1 Multiple APIC.  Local processor APICs with one or
more IO APICs as defined by the Multiple APIC
Description Table.

>1 Reserved.
Reserved 1 45
SCI_INT 2 46 System pin the SCI interrupt is wired to. The OS is required

to treat the ACPI SCI interrupt as a sharable, level, active
low interrupt.

SMI_CMD 4 48 System port address of the SMI Command Port.  During
ACPI OS initialization, the OS can determine that the ACPI
hardware registers are owned by SMI (by way of the
SCI_EN bit), in which case the ACPI OS issues the
SMI_DISABLE command to the SMI_CMD port. The
SCI_EN bit effectively tracks the ownership of the ACPI
hardware registers. The OS issues commands to the
SMI_CMD port synchronously from the boot processor.

ACPI_ENABLE 1 52 The value to write to SMI_CMD to disable SMI ownership
of the ACPI hardware registers. The last action SMI does to
relinquish ownership is to set the SCI_EN bit. The OS
initialization process will synchronously wait for the
ownership transfer to complete, so the ACPI system
releases SMI ownership as timely as possible.

ACPI_DISABLE 1 53 The value to write to SMI_CMD to re-enable SMI
ownership of the ACPI hardware registers. This can only be
done when ownership was originally acquired from SMI by
the OS using ACPI_ENABLE. An OS can hand ownership
back to SMI by relinquishing use to the ACPI hardware
registers, masking off all SCI interrupts, clearing the
SCI_EN bit and then writing ACPI_DISABLE to the
SMI_CMD port from the boot processor.
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Field Byte
Length

Byte
Offset

Description

S4BIOS_REQ 1 54 The value to write to SMI_CMD to enter the S4BIOS state.
The S4BIOS state provides an alternate way to enter the S4
state where the firmware saves and restores the memory
context. A value of zero in S4BIOS_F indicates
S4BIOS_REQ is not supported. (See Table 5-8.)

Reserved 1 55
PM1a_EVT_BLK 4 56 System port address of the Power Management 1a Event

Register Block. See section 4.7.3.1 for a hardware
description layout of this register block. This is a required
field.

PM1b_EVT_BLK 4 60 System port address of the Power Management 1b Event
Register Block. See section 4.7.3.1 for a hardware
description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero.

PM1a_CNT_BLK 4 64 System port address of the Power Management 1a Control
Register Block. See section 4.7.3.2 for a hardware
description layout of this register block. This is a required
field.

PM1b_CNT_BLK 4 68 System port address of the Power Management 1b Control
Register Block. See section 4.7.3.2 for a hardware
description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero.

PM2_CNT_BLK 4 72 System port address of the Power Management 2 Control
Register Block. See section 4.7.3.4 for a hardware
description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero.

PM_TMR_BLK 4 76 System power address of the Power Management Timer
Control Register Block. See section 4.7.3.3 for a hardware
description layout of this register block. This is a required
field.

GPE0_BLK 4 80 System port address of Generic Purpose Event 0 Register
Block. See section 4.7.4.3 for a hardware description of this
register block. This is an optional field; if this register block
is not supported, this field contains zero.

GPE1_BLK 4 84 System port address of Generic Purpose Event 1 Register
Block. See section 4.7.4.3 for a hardware description of this
register block. This is an optional field; if this register block
is not supported, this field contains zero.

PM1_EVT_LEN 1 88 Number of bytes in port address space decoded by
PM1a_EVT_BLK and, if supported, PM1b_CNT_BLK.
This value is ≥ 4.

PM1_CNT_LEN 1 89 Number of bytes in port address space decoded by
PM1a_CNT_BLK and, if supported, PM1b_CNT_BLK.
This value is ≥ 1.

PM2_CNT_LEN 1 90 Number of bytes in port address space decoded by
PM2_CNT_BLK. This value is ≥ 1.

PM_TM_LEN 1 91 Number of bytes in port address space decoded by
PM_TM_BLK. This value is ≥ 4.
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Field Byte
Length

Byte
Offset

Description

GPE0_BLK_LEN 1 92 Number of bytes in port address space decoded by
GPE0_BLK. The value is a non-negative multiple of 2.

GPE1_BLK_LEN 1 93 Number of bytes in port address space decoded by
GPE1_BLK. The value is a non-negative multiple of 2.

GPE1_BASE 1 94 Offset within the ACPI general-purpose event model where
GPE1 based events start.

Reserved 1 95
P_LVL2_LAT 2 96 The worst-case hardware latency, in microseconds, to enter

and exit a C2 state. A value > 100 indicates the system does
not support a C2 state.

P_LVL3_LAT 2 98 The worst-case hardware latency, in microseconds, to enter
and exit a C3 state. A value > 1000 indicates the system
does not support a C3 state.

FLUSH_SIZE 2 100 If WBINVD=0, the value of this field is the contiguous
memory size that needs to be read( using cacheable
addresses) to flush dirty lines from any processor’s memory
caches. If the system does not support a method for flushing
the processor’s caches, then FLUSH_SIZE and WBINVD
are set to zero. Note that this method of flushing the
processor caches has limitations, and WBINVD=1 is the
preferred way to flush the processors caches. In particular, it
is known that at least Intel Pentium Pro Processor, MP C3
support, 3rd level victim caches require WBINVD=1
support. This value is typically at least 2 times the cache
size. The maximum allowed value for this setting is 2 MB
for a typical maximum supported cache size of 1 MB
through this mechanism. Larger cache sizes are supported
using WBINVD=1.
This value is ignored if WBINVD=1.

FLUSH_STRIDE 2 102 If WBINVD=0, the value of this field is the memory stride
width, in bytes, to perform reads to flush the processor’s
memory caches.  These cacheable memory reads are done
for a length of FLUSH_SIZE from cacheable addresses to
flush dirty lines from the processor’s caches.  This value is
typically the smallest cache line width on any of the
processor’s caches.
This value is ignored if WBINVD=1.

DUTY_OFFSET 1 104 The zero-based index of where the processor’s duty cycle
setting is within the processor’s P_CNT register.

DUTY_WIDTH 1 105 The bit width of the processor’s duty cycle setting value in
the P_CNT register. Each processor’s duty cycle setting
allows the software to select a nominal processor frequency
below its absolute frequency as defined by:
THTL_EN = 1
BF * DC / (2DUTY_WIDTH)
    where:
BF = Base frequency
DC = Duty cycle setting
When THTL_EN is 0, the processor runs at its absolute BF.
A DUTY_WIDTH value of 0 indicates that processor duty
cycle is not supported and the processor continuously runs
at its base frequency.
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Field Byte
Length

Byte
Offset

Description

DAY_ALRM 1 106 The RTC CMOS RAM index to the day-of-month alarm
value. If this field contains a zero, then the RTC day of the
month alarm feature is not supported. If this field has a non-
zero value, then this field contains an index into RTC RAM
space that the OS can use to program the day of the month
alarm. See section 4.7.2.4 for a description of how the
hardware works.

MON_ALRM 1 107 The RTC CMOS RAM index to the month of year alarm
value. If this field contains a zero, then the RTC month of
the year alarm feature is not supported. If this field has a
non-zero value, then this field contains an index into RTC
RAM space that the OS can use to program the month of the
year alarm. If this feature is supported, then the
DAY_ALRM feature must be supported also.

CENTURY 1 108 The RTC CMOS RAM index to the century of data value
(hundred and thousand year decimals). If this field contains
a zero, then the RTC centenary feature is not supported.  If
this field has a non-zero value, then this field contains an
index into RTC RAM space that the OS can use to program
the centenary field.

Reserved 3 109
Flags 4 112 Fixed feature flags. See Table 5-6 for a description of this

field.

Table 5-6   Fixed ACPI Description Table Fixed Feature Flags

FACP - Flag Bit
length

Bit
offset

Description

WBINVD 1 0 WBINVD is correctly supported. Signifies that the
WBINVD instruction correctly flushes the processor
caches, maintains memory coherency, and upon completion
of the instruction, all caches for the current processor
contain no cached data other than what the OS references
and allows to be cached. If this flag is not set, the ACPI OS
is responsible for disabling all ACPI features that need this
function.

WBINVD_FLUSH 1 1 If set, indicates that the hardware flushes all caches on the
WBINVD instruction and maintains memory coherency, but
does not guarantee the caches are invalidated. This provides
the complete semantics of the WBINVD instruction, and
provides enough to support the system sleeping states. Note
that on Intel Pentium Pro Processor machines, the
WBINVD instruction must flush and invalidate the caches.
If neither of the WBINVD flags are set, the system will
require FLUSH_SIZE and FLUSH_STRIDE to support
sleeping states. If the FLUSH parameters are also not
supported, the machine cannot support sleeping states S1,
S2, or S3.

PROC_C1 1 2 A one indicates that the C1 power state is supported on all
processors. A system can support more Cx states, but is
required to at least support either the C1 or C2 power state.
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FACP - Flag Bit
length

Bit
offset

Description

P_LVL2_UP 1 3 A zero indicates that the C2 power state is configured to
only work on a UP system. A one indicates that the C2
power state is configured to work on a UP or MP system.

PWR_BUTTON 1 4 A zero indicates the power button is handled as a fixed
feature programming model; a one indicates the power
button is handled as a control method device. If the system
does not have a power button, this value would be “1” and
no sleep button device would be present

SLP_BUTTON 1 5 A zero indicates the sleep button is handled as a fixed
feature programming model; a one indicates the power
button is handled as a control method device.
If the system does not have a sleep button, this value would
be “1” and no sleep button device would be present.

FIX_RTC 1 6 A zero indicates the RTC wake-up status is supported in
fixed register space; a one indicates the RTC wake-up status
is not supported in fixed register space.

RTC_S4 1 7 Indicates whether the RTC alarm function can wake the
system from the S4 state. The RTC must be able to wake the
system from an S1, S2, or S3 sleep state. The RTC alarm
can optionally support waking the system from the S4 state,
as indicated by this value.

TMR_VAL_EXT 1 8 A zero indicates TMR_VAL is implemented as a 24-bit
value. A one indicates TMR_VAL is implemented as a 32-
bit value. The TMR_STS bit is set when the most
significant bit of the TMR_VAL toggles.

Reserved 23

5.2.6 Firmware ACPI Control Structure
The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the BIOS has set
aside for ACPI usage. This structure is passed to an ACPI-compatible OS using the Fixed ACPI Description
Table. For more information about the Fixed ACPI Description Table FIRMWARE_CTRL field, see
section 5.2.5.
The BIOS aligns the FACS on a 64-byte boundary anywhere within the 0-4G memory address space. The
memory where the FACS structure resides must not be reported as system memory in the system’s memory
map. For example, the E820 memory reporting interface would report the region as AddressRangeReserved.
For more information about the E820 memory reporting interface, see section 14.1.

Table 5-7  Firmware ACPI Control Structure

Field Byte
Length

Byte
Offset

Description

Signature 4 0 ‘FACS’
Length 4 4 Length, in bytes, of the entire Firmware ACPI Control

Structure. This value is 64 bytes or larger.
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Field Byte
Length

Byte
Offset

Description

Hardware Signature 4 8 The value of the system’s “hardware signature” at last boot.
This value is calculated by the BIOS on a best effort basis
to indicate the base hardware configuration of the system
such that different base hardware configurations can have
different hardware signature values. The OS uses this
information in waking from an S4 state, by comparing the
current hardware signature to the signature values saved in
the non-volatile sleep image. If the values are not the same,
the OS assumes that the saved non-volatile image is from a
different hardware configuration and can not be restored.

Firmware Waking
Vector

4 12 Location into which the ACPI OS puts its waking vector.
Before transitioning the system into a global sleeping state,
the OS fills in this vector with the physical memory address
of an OS-specific wake function. During POST, the BIOS
checks this value and if it is non-zero, transfers control to
the specified address.
On PCs, the wake function address is in memory below
1MB and the control is transferred while in real mode. The
OS wake function restores the processors’ context.
For PC-IA platforms, the following example shows the
relationship between the physical address in the Firmware
Waking Vector and the real mode address the BIOS jumps
to. If, for example, the physical address is 0x12345, then the
BIOS must jump to real mode address 0x1234:0x0005. In
general this relationship is
   Real-mode address =
   Physical address>>4 : Physical address & 0x000F
Note that on PC-IA platforms, A20 must be enabled when
the BIOS jumps to the real mode address derived from the
physical address stored in the Firmware Waking Vector.

Global Lock 4 16 The Global Lock is used to synchronize access to shared
hardware resources between the OS environment and the
SMI environment.  This lock is owned exclusively by either
the OS or the firmware at any one time. When ownership of
the lock is attempted, it might be busy, in which case the
requesting environment exits and waits for the signal that
the lock has been released. For example, the Global Lock
can be used to protect an embedded controller interface
such that only the OS or the firmware will access the
embedded controller interface at any one time. See section
5.2.6.1 for more information on acquiring and releasing the
Global Lock.

Flags 4 20 Firmware control structure flags. See Table 5-8 for a
description of this field.

Reserved 40 24 This value is zero

Table 5-8  Firmware Control Structure Feature Flags

FACS - Flag Bit
Length

Bit
Offset

Description
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FACS - Flag Bit
Length

Bit
Offset

Description

S4BIOS_F 1 0 Indicates whether the platform supports S4BIOS_REQ. If
S4BIOS_REQ is not supported, the OS must be able to save
and restore the memory state in order to use the S4 state.

Reserved 31 1 The value is zero.

5.2.6.1 Global Lock
The Global Lock is a DWORD in read/write memory in the Firmware ACPI Control Structure, accessed
and updated by both the operating system environment and SMI environment in a defined manner to
provide an exclusive lock. By convention, this lock is used to ensure that while one environment is
accessing some hardware, the other environment is not. By this convention, when ownership of the lock
fails because it is owned by the other environment, the requesting environment sets a “pending” state within
the lock, exits its attempt to acquire the lock, and waits for the owning environment to signal that the lock
has been released before attempting to acquire the lock again. When releasing the lock, if the pending bit in
the lock is set after the lock is released, a signal is sent using an inter-environment interrupt mechanism to
the other environment to inform it that the lock has been released. During interrupt handling for the “lock
released” event within the corresponding environment, if the lock ownership is still desired an attempt to
acquire the lock would be made. If ownership is not acquired, then the environment must again set
“pending” and wait for another “lock release” signal.

Table 5-9 shows the encoding of the Global Lock DWORD in memory:

Table 5-9  Embedded Controller Arbitration Structure

Field Bit
Length

Bit
Offset

Description

Pending 1 0 Non-zero indicates that a request for ownership of the
Global Lock is pending.

Owned 1 1 Non-zero indicates that the Global Lock is Owned.
Reserved 30 2 Reserved for future use.

The following code sequence is used by both the OS and the firmware to acquire ownership of the Global
Lock.  If non-zero is returned by the function, the caller has been granted ownership of the Global Lock and
can proceed.  If zero is returned by the function, the caller has not been granted ownership of the Global
Lock, the “pending” bit has been set, and the caller must wait until it is signaled by  an interrupt event that
the lock is available before attempting to acquire access again.

AcquireGlobalLock:
mov ecx, GlobalLock ; ecx = address of Global Lock

acq10: mov eax, [ecx] ; Value to compare against

mov edx, eax
and edx, not 1 ; Clear pending bit
bts edx, 1 ; Check and set owner bit
adc edx, 0 ; if owned, set pending bit

; Attempt to set new value
lock cmpxchg dword ptr[ecx], edx
jnz short acq10  ; If not set, try again

cmp dl, 3 ; Was it acquired or marked pending?
sbb eax, eax ; acquired = -1, pending = 0

ret

The following code sequence is used by the OS and the firmware to release ownership of the Global Lock.
If non-zero is returned, the caller must raise the appropriate event to the other environment to signal that the
Global Lock is now free. Depending on the environment this is done by setting the either the GBL_RLS or



ACPI Software Programming Model 5-87

Intel/Microsoft/Toshiba

BIOS_RLS within their respective hardware register spaces. This signal only occurs when the other
environment attempted to acquire ownership while the lock was owned.

ReleaseGlobalLock:
mov ecx, GlobalLock ; ecx = address of Global Lock

rel10: mov eax, [ecx]     ; Value to compare against

mov edx, eax 
and edx, not 03h ; clear owner and pending field

; Attempt to set it
lock cmpxchg dword ptr[ecx], edx
jnz short rel10 ; If not set, try again

and eax, 1 ; Was pending set?
ret

Although using the Global Lock allows various hardware resources to be shared, it is important to note that
its usage when there is ownership contention could entail a significant amount of system overhead as well as
waits of an indeterminate amount of time to acquire ownership of the Global Lock. For this reason,
implementations should try to design the hardware to keep the required usage of the Global Lock to a
minimum. The Global Lock is required when a logical register in the hardware is shared. For example, if bit
0 is used by ACPI (the OS) and bit 1 of the same register is used by SMI, then access to that register needs
to be protected under the global lock, ensuring that the register’s contents do not change from underneath
one environment while the other is making changes to it. Similarly if the entire register is shared, as the case
might be for the embedded controller interface, access to the register needs to be protected under the global
lock.

5.2.7 Definition Blocks
A Definition Block contains information about hardware implementation details in the form of objects that
contain data, AML code, or other objects. The top-level organization of this information after a definition
block is loaded is name-tagged in a hierarchical name space.

The OS “loads” or “unloads” an entire definition block as a logical unit. As part of the Fixed ACPI
Description Table, the system provides the operating system with the Differentiated System Description
Table that contains the Differentiated Definition Block to be loaded at operating system initialization time
and cannot be unloaded.

It is possible for this Definition Block to load other Definition Blocks, either statically or dynamically,
where they in turn can either define new system attributes or, in some cases, build on prior definitions.
Although this gives the hardware the ability to vary widely in implementation, it also confines it to
reasonable boundaries. In some cases, the Definition Block format can describe only specific and well
understood variances. In other cases, it permits implementations to be expressible only by means of a
specified set of “built in” operators. For example, the Definition Block has built in operators for IO space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by
building it from IO space, but that is not the goal of the definition block. Such a space  is usually defined as
a “built in” operator.

Some operators perform simple functions, and others encompass complex functions. The power of the
Definition block comes from its ability to allow these operations to be glued together in numerous ways, to
provide functionality to the OS.

The operators present are intended to allow many useful hardware designs to be easily expressed, not to
allow all hardware design to be expressed.

5.2.7.1 Differentiated System Description Table
The Differentiated System Description Table is part of the system fixed description in Definition Block
format. This Definition Block is like all other Definition Blocks, with the exception that it cannot be
unloaded. See section 5.2.7 for a description of Definition Blocks.
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5.2.7.2 Secondary System Description Table
Secondary System Description Tables are a continuation of the Differentiated System Description Table.
There can be multiple Secondary System Description Tables present. After the Differentiated System
Description Table is loaded, each secondary description table with a unique OEM Table ID is loaded. This
allows the OEM to provide the base support in one table and add smaller system options in other tables. For
example, the OEM might put dynamic object definitions into a secondary table such that the firmware can
construct the dynamic information at boot without needing to edit the static Differentiated System
Description Table. A Secondary System Description Table can only rely on the Differentiated System
Description Table being loaded prior to itself.

5.2.7.3 Persistent System Description Table
Persistent System Description Tables are similar to Secondary System Description Tables, except a
Persistent System Description Table can be saved by the OS and automatically loaded at every boot. This
can be used in the case where a Definition Block is loaded dynamically, for example based on the presence
of some device, and the Definition Block has the ability to be loaded regardless of the presence of its
device(s). In this case, by marking the Definition Block as persistent, the operating system can load the
definition prior to the device appearing thus improving the load and enumeration time for the device when it
does finally appear in the system. In particular, dynamic docking station devices might want to design their
Definition Blocks as persistent.

5.2.8 Multiple APIC Description Table
The ACPI interrupt model describes all interrupts for the entire system in a uniform interrupt model
implementation. Supported interrupt models include the PC-AT compatible dual 8259 interrupt controller
and, for Intel processor-based systems, the Intel  APIC interrupt controller. The choice of the interrupt
model to support is up to the platform designer, but it cannot be dynamically changed by the system
firmware; the OS will choose which model to use and install support for that model at the time of
installation. If a platform supports both models, the OS will only use one; it will not mix models. Therefore,
the ACPI interrupt model must remain constant for all time on any given system. This section provides the
APIC Description Table information necessary to use an APIC implementation on ACPI.

ACPI represents all interrupt vectors as  “flat” values where each system vector has a different value. The
primary information needed to support APICs on such a model is to map each IO APIC’s interrupt INTI to
the flat system vector value used by ACPI. Additional APIC support is required to handle various multi-
processor functions that APIC implementations might support (specifically, identifying each processor’s
local APIC ID).

Table 5-10  Multiple APIC Description Table Format

Field Byte
Length

Byte
Offset

Description

Header
    Signature 4 0 ‘APIC’. Signature for the Multiple APIC Description Table.
    Length 4 4 Length, in bytes, of the entire Multiple APIC Description

Table.
    Revision 1 8 1
    Checksum 1 9 Entire table must sum to zero.
    OEMID 6 10 OEM ID.
    OEM Table ID 8 16 For the Multiple APIC Description Table, the table ID is the

manufacturer model ID.
    OEM Revision 4 24 OEM revision of Multiple APIC Description Table for

supplied OEM Table ID.
   Creator ID 4 28 Vendor ID of utility that created the table.  For the DSDT,

RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.
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Field Byte
Length

Byte
Offset

Description

   Creator Revision 4 32 Revision of utility that created the table.  For the DSDT,
RSDT, SSDT, and PSDT tables, this is the revision for the
ASL Compiler.

Local APIC Address 4 36 The physical address at which each processor can access its
local APIC.

Flags 4 40 Multiple APIC flags. See Table 5-11 for a description of
this field.

Table 5-11  Multiple APIC Description Table Flags

Multiple APIC Flags Bit
Length

Bit
Offset

Description

PCAT_COMPAT 1 0 A one indicates that the system also has a PC-AT
compatible dual-8259 setup. The 8259 vectors must be
disabled (that is, masked) when enabling the ACPI APIC
operation.

Reserved 31 1 This value is zero.

Following the Multiple APIC Description Table is a list of APIC structures that declare the APIC features
of the machine. The first byte of the structure declares the structure type, and the second byte declares the
length of the structure.

Table 5-12  APIC Structure Types

Value Description
0 Processor Local APIC
1 IO APIC
>1 Reserved. The OS skips structures of the reserved type.

5.2.8.1 Processor Local APIC
When using the APIC interrupt model, each processor in the system is required to have a Processor Local
APIC record and an ACPI Processor object. Processor information cannot change during the life of an
operating system boot. For example, while in the sleeping state, processors are not allowed to be added,
removed, nor can their APIC ID or Flags change. When a processor is not present, the Processor Local
APIC information is either not reported or flagged as disabled.

Table 5-13   Processor Local APIC Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 0 - Processor Local APIC structure
Length 1 1 8
ACPI Processor ID 1 2 The ProcessorId for which this processor is listed in the

ACPI Processor declaration operator. For a definition of the
Processor operator, see section 15.2.3.4.1.10.

APIC ID 1 3 The processor’s local APIC ID.
Flags 4 4 Local APIC flags. See Table 5-14 for a description of this

field.

Table 5-14  Local APIC Flags

Local APIC - Flags Bit
Length

Bit
Offset

Description
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Local APIC - Flags Bit
Length

Bit
Offset

Description

Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.

Reserved 31 1 Must be zero.

5.2.8.2 IO APIC
In an APIC implementation, there is one or more IO APICs. Each IO APIC has a series of interrupt inputs,
called INTIx, where the value of x is from 0 to last INTI line on the specific IO APIC. The IO APIC
structure declares where in the system vector space the IO APICs INTIs appear. Each IO APIC INTI has an
exclusive system vector mapping. There is one IO APIC structure per IO APIC in the system.

Table 5-15  IO APIC Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 1 - IO APIC structure
Length 1 1 12
IO APIC ID 1 2 The IO APIC’s ID.
Reserved 1 3 0
IO APIC Address 4 4 The physical address to access this IO APIC. Each IO APIC

resides at a unique address.
System Vector Base 4 8 The system interrupt vector index where this IO APIC’s

INTI lines start. The number of INTI lines is determined by
the IO APIC’s Max Redir Entry register.

5.2.8.3 Platforms with APIC and Dual 8259 Support
Systems that support both APIC and dual 8259 interrupt models must map interrupt vectors 0-15 to 8259
IRQs 0-15.  This allows such a platform to support ACPI OSes that use the APIC model and as well as
those ACPI OSes those that use the 8259 model (the OS will only use one model; it will not mix models).
When an ACPI OS supports the 8259 model, it will assume that any interrupt descriptors reporting vectors
0-15 correspond to 8259 IRQs and any vectors from any interrupt descriptor greater than 15 are ignored.
When an ACPI OS loads APIC support, it will enable the APIC as described by the APIC specification, and
use all reported interrupt vectors.  (For more information on hardware resource configuration see section 6)

5.2.9 Smart Battery Table
If the platform supports batteries as defined by the Smart Battery Specification 1.0, then a Smart Battery
Table is present.  This table indicates the energy level trip points that the platform requires for placing the
system into the specified sleeping state and the suggested energy levels for warning the user to transition the
platform into a sleeping state.  The OS uses these tables with the capabilities of the batteries to determine
the different trip points.  For more information, see the section 11, which describes the control method
battery.

Table 5-16  Smart Battery Description Table Format

Field Byte
Length

Byte
Offset

Description

Header
    Signature 4 0 ‘SBST’. Signature for the Smart Battery Description Table.
    Length 4 4 Length, in bytes, of the entire Smart Battery Description

Table.
    Revision 1 8 1
    Checksum 1 9 Entire table must sum to zero.
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Field Byte
Length

Byte
Offset

Description

    OEMID 6 10 OEM ID.
    OEM Table ID 8 16 For the Smart Battery Description Table, the table ID is the

manufacturer model ID.
    OEM Revision 4 24 OEM revision of Smart Battery Description Table for

supplied OEM Table ID.
   Creator ID 4 28 Vendor ID of utility that created the table.  For the DSDT,

RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.

   Creator Revision 4 32 Revision of utility that created the table.  For the DSDT,
RSDT, SSDT, and PSDT tables, this is the revision for the
ASL Compiler.

Warning Energy
Level

4 36 OEM suggested energy level in milliWatt-hours (mWh) at
which the platform warns the user.

Low Energy Level 4 40 OEM suggested platform energy level in mWh at which the
platform is placed in a sleeping state.

Critical Energy Level 4 44 OEM suggested platform energy level in mWh at which the
platform performs an emergency shutdown.

5.3 ACPI Name Space
For all Definition Blocks, the system maintains a single hierarchical name space that it uses to refer to
objects. All Definition Blocks load into the same name space. Although this allows one Definition Block to
reference objects and data from another (thus enabling interaction), it also means that OEMs must take care
to avoid any naming collisions7.  Only an unload operation of a Definition Block can remove names from
the name space, so a name collision in an attempt to load a Definition Block is considered fatal.  Contents
of the name space only changes on a load or unload operation.

The name space is hierarchical in nature, with each name allowing a collection of names “below” it. The
following naming conventions apply to all names:
• All names are a fixed 32 bits.
• The first byte of a name are inclusive of: ‘A’ - ‘Z’, ‘_’,  (0x41 - 0x5A, 0x5F).
• The remaining three bytes of a name are inclusive of : ‘A’ - ‘Z’, ‘0’ - ‘9’, ‘_’,  (0x41 - 0x5A, 0x30 -

0x39, 0x5F).
• By convention If a name is padded, it is done so with trailing underscores (‘_’ ).
• Names beginning with ‘_’ are reserved by this specification. Definition Blocks can only use names

beginning with ‘_’ as defined by this specification.
• A name preceded with ‘\’ causes the name to refer to the root of the name space (‘\’ is not part of the

32-bit fixed-length name).

Except for names preceded with a ‘\’, the current name space determines where in the name space hierarchy
a name being created goes and where a name being referenced is found. A name is located by finding the
matching name in the current name space, and then in the parent name space. If the name space does not
have a parent (the root of the name space), the name is not found8.

All name references use a 32-bit fixed-length name or use a Name Extension prefix to concatenate multiple
32-bit fixed-length name components together. This is useful for referring to the name of an object, such as
a control method, that is not in the scope of the current name space.

                                                          
7 For the most part, since the name space is hierarchical, typically the bulk of a dynamic definition file will
load into a different part of the hierarchy. In the root of the name space, and certain locations where
interaction is being designed in, will be the areas which extra care must be taken.
8 Unless the operation being performed is explicitly prepared for failure in name resolution, this is
considered an error and results in a systems crash.
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Figure 5-3 shows a sample of the ACPI name space after a Differentiated Definition Block has been loaded.
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Figure 5-3  Example ACPI Name Space

5.3.1 Defined Root Names Spaces
The following name spaces are defined under the name space root.

Table 5-17   Name Spaces Defined Under the Name Space Root

Name Description
\_GPE General events in GPE register block.
\_PR All Processor objects are defined under this name space. For more information about

defining Processor objects, see section 8
\_SB All Device / Bus Objects are defined under this name space.
\_SI System indicator objects are defined under this name space. For more information about

defining system indicators, see section 10.1.
\_TZ All Thermal Zone objects are defined under this name space. For more information about

defining Thermal Zone objects, see section 12.

5.3.2 Objects
All objects, except locals, have a global scope. Local data objects have a per-invocation scope and lifetime
and are used to process the current invocation from beginning to end.

The contents of objects varies greatly. Nevertheless, most objects refer to data variables of any supported
data type, a control method, or system software-provided functions.
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5.4 Definition Block Encoding
This section specifies the encoding used in a Definition Block to define names (load time only), objects, and
packages. The Definition Block is encoded as a stream from begin to end. The lead byte in the stream
comes from the AML encoding tables shown in section 16 and signifies how to interpret some number of
following bytes, where each following byte can in turn signify how to interpret some number of following
bytes. For a full specification of the AML encodings, see section 16.
Within the stream there are two levels of datum being defined. One is the packaging and object declarations
(load time), and the other is an object reference (package contents / run time).

All encodings are such that the lead byte of an encoding signifies the type of declaration or reference being
made. The type either has an implicit or explicit length in the stream. All explicit length declarations take
the form shown below, where PkgLength is the length of the inclusive length of the data for the operation.

LeadB y te Pk gLen g th data... LeadB y te ...

PkgLength

Encodings of  implicit length objects either have fixed length encodings or allow for nested encodings that,
at some point, either result in an explicit or implicit fixed length.

The PkgLength is encoded as a series of 1 to 4 bytes in the stream with the most significant two bits of byte
zero, indicating how many following bytes are in the PkgLength encoding. The next two bits are only used
in one-byte encodings, which allows for one-byte encodings on a length up to 0x3F. Longer encodings,
which do not use these two bits, have a maximum length of the following: two-byte encodings of 0x0FFF,
three-byte encodings of 0x0FFFFF, and four-byte length encodings of 0x0FFFFFFFFF.

It is fatal for a package length to not fall on a logical boundary. For example, if a package is contained in
another package, then by definition its length must be contained within the outer package, and similarly for
a datum of implicit length.

Figure 5-4 shows a sample ACPI Machine Language (AML) byte stream encoding, and illustrates the use of
PkgLength values in the byte stream.

At some point, the system software decides to “load” a Definition Block. Loading is accomplished when the
system makes a pass over the data and populates the ACPI name space and initializes objects accordingly.
The name space for which population occurs is either from the current name space location, as defined by
all nested packages or from the root if the name is preceded with ‘\’. For example, the byte stream shown in
the left column of  Figure 5-4 (indented by logical packaging level) produces the objects in the name space
shown in the right column.

Byte Stream Description
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Byte Stream Description
5B 80 Define Operation Region operator.

     5C 47 49 4F 5F \GIO_ (Name of operational region located at root level of
ACPI Name Space at definition block load time.)

     01 Operational region is in System IO address space.
     0B 25 01 Operational region starts at 0x0125 (leading 0x0B means

Word constant)
     0A 01 Length of operational region is one byte (leading 0x0A

means byte constant).
     5B 81 Define Fields operator.
     0C Length of Define Fields definition in byte stream is 12

bytes, starting from the beginning of this byte.
          5C 47 49 4F 5F \GIO_  (Name of operational region within which to define

field.)
          00 Flag byte set to AnyAcc, NoLock, and Preserve (for more

information, see section 16).
          43 54 30 31 CT01 (Name of field.)
          01 Length of field named ‘CT01’ is one bit.
10 Name Scope operator.
42 04 Scope package length is 66 bytes (from the beginning of

this byte). Bits 6 and 7 of leading byte are set when
package lenght is greater than 0x3F bytes (for more
information, see section 16).

5C 5F 53 42 5F \_SB_  (Name of scope package)
     5B 82 Define Bus/Device Package operator.
     39 Length of Bus/Device package is 57 bytes from the

beginning of this byte.
     50 43 49 30 PCI0  (Name of device)
     5B 84 Power Resource operator; begins a package that declares a

named Power Resource object.
     32 Length of Power Resource package is 50 bytes from the

beginning of this byte.
        46 45 54 30 FET0  (Name of Power Resource object)
        00 Indicates lowest-power system sleep state OS must maintain

to keep this power resource on; value of zero indicates
S0.

        00 00 Apply control methods contained in this power resource
package at first step of power operation sequencing.

        14 Define Method operator.
        10 Length of this control method definition is 16 bytes from

the beginning of this byte.
             5F 4F 4E 5F 00 _ON_  (System-defined control method name.)
             00 Number of parameters for this control method.
             70 Store operator.
             FF Source of Store operation is OnesByte
             43 54 30 31 CT01  (Name of target for Store operation.)
             5B 22 Sleep operator.
             1E 00 Duration of sleep is 30 milliseconds.
             14 Define Method operator.
             0C Length of this control method definition is 12 bytes from

the beginning of this byte.
             5F 4F 46 46 00 _OFF  (System-defined control method name.)
             00 Number of parameters for this control method.
             70 Store operator.
             00 Source of Store operation is ZeroByte.
             43 54 30 31 CT01  (Name of target for Store operation).
             14 Define Method operator.
             0B Length of this control method definition is 11 bytes from

the beginning of this byte.
             5F 5B 54 41 _STA (System-defined control method name.)
             00 Number of parameters for this control method.
             A4 Return operator
             43 54 30 31 CT01  (Name of object to return)

Figure 5-4  Sample Data Format Byte Stream Encoding with Corresponding Name Space
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The first object present in a Definition Block must be a named control method. This is the Definition
Block’s initialization control.

Packages are objects that contain an ordered reference to one or more objects. A package can also be
considered a vertex of an array, and any object contained within a package can be another package. This
permits multidimensional arrays of fixed or dynamic depths and vertices.

Unnamed objects are used to populate the contents of named objects. Unnamed objects cannot be created in
the “root”. Unnamed objects can be used as arguments in control methods.

5.5 Using the ACPI Control Method Source Language
OEMs and BIOS vendors write definition blocks using the ACPI Control Method Source language (ASL)
and use a translator to produce the byte stream encoding described in section 5.4. For example, the ASL
statements that produce the example byte stream shown in that earlier section are shown in the following
ASL example. For a full specification of the ASL statements, see section 15.

// ASL Example
DefinitionBlock (

"forbook.aml", // Output Filename
"DSDT", // Signature
0x10, // DSDT Revision
"OEM", // OEMID
"forbook", // TABLE ID
0x1000 // OEM Revision
)

{ // start of definition block
OperationRegion(\GIO, SystemIO, 0x125, 0x1)
Field(\GIO, ByteAcc, NoLock, Preserve) {

CT01, 1,
}

Scope(\_SB) { // start of scope
Device(PCI0) { // start of device

PowerResource(FET0, 0, 0) { // start of pwr
Method(_ON) {

Store (Ones, CT01) // assert power
Sleep (30) // wait 30ms

}
Method(_OFF) {

Store (Zero, CT01) // assert reset#
}
Method(_STA) {

Return (CT01)
}

} // end of pwr
} // end of device

} // end of scope
} // end of definition block

5.5.1 ASL Statements
ASL is principally a declarative language. ASL statements declare objects. Each object has three parts, two
of which can be null:

Object := ObjectType FixedList VariableList

FixedList refers to a list of known length that supplies data which all instances of a given ObjectType must
have. It is written as ( a , b , c , … ), where the number of arguments depends on the specific ObjectType,
and some elements can be nested objects, that is (a, b, (q, r, s, t), d). Arguments to a FixedList can have
default values, in which case they can be skipped. Some ObjectTypes can have a null FixedList.

VariableList refers to a list, NOT of predetermined length, of child objects that help define the parent. It is
written as { x, y, z, aa, bb, cc }, where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariableList. Some ObjectTypes can have a null variable list.
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For a detailed specification of the ASL language, see section 15. For a detailed specification of the ACPI
Control Method Machine Language (AML), upon which the output of the ASL translator is based, see
section 16.

5.5.2 ASL Macros
The ASL compiler supports some built in macros to assist in various ASL coding operations. The following
table lists the supported directives and an explanation of their function.

Table 5-18   ASL Built-in Macros

ASL Statement Description
Offset(a) Used in a FieldList parameter to supply the byte offset of the next defined

field within its parent region. This can be used instead of defining the bit
lengths that need to be skipped. All offsets are defined from beginning to
end of a region.

EISAID (Id) Macro that converts the 7-character text argument into its corresponding 4-
byte numeric EISA ID encoding. This can be used when declaring IDs for
devices that are EISA IDs.

ResourceTemplate() Macro used to supply Plug and Play resource descriptor information in
human readable form, which is then translated into the appropriate binary
Plug and Play resource descriptor encodings. For more information about
resource descriptor encodings, see section 6.4.

5.5.3 Control Method Execution
The operating software will initiate well-defined control methods as necessary to either interrogate or adjust
system-level hardware state. This is called an invocation.

A control method can use other internal, or well defined, control methods to accomplish the task at hand,
which can include defined control methods provided by the operating software. Interpretation of a Control
Method is not preemptive, but can block. When a control method does block, the operating software can
initiate or continue the execution of a different control method. A control method can only assume that
access to global objects is exclusive for any period the control method does not block.

5.5.3.1 Control Methods, Objects, and Operation Regions

Control Methods can reference any objects anywhere in the Name Space as well as objects that have
shorthand encodings shown in section 15.1.3.1. Shorthand encodings are provided for common operators.
The operators can access the contents of a object. An object’s contents are either in dynamic storage (RAM)
or, in some cases, in hardware registers. Access to hardware registers from within a control method is
eventually accomplished through an Operation Region. Operation Regions are required to have exclusive
access to the hardware registers9. Control methods do not directly access any other hardware registers,
including the ACPI-defined register blocks. Some of the ACPI registers, in the defined ACPI registers
blocks, are maintained on behalf of control method execution. For example, the GP_BLK is not directly
accessed by a control method but is used to provide an extensible interrupt handling model for control
method invocation.

5.5.4 Control Method Arguments, Local Variables, and Return Values

Control methods can be passed up to seven arguments. Each argument is an object, and could in turn be a
“package” style object that refers to other objects. Access to the argument objects have shorthand
encodings. For the definition of the Argx shorthand encoding, see section  15.2.3.3.4.

The number of arguments passed to any control method is fixed and is defined when the control method
package is created. For the definition of the Method operator, see section 15.2.3.4.1.6.

                                                          
9 This means the registers are not used by non-ACPI OS device drivers or SMI handling code.
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Control methods can access up to eight local data objects. Access to the local data objects have shorthand
encodings. On initial control method execution ,the local data objects are NULL. For the definition of the
Localx shorthand encoding, see section 15.2.3.3.4.2).

Upon control method execution completion, one object can be returned that can be used as the result of the
execution of the method. The “caller” must either use the result or save it to a different object if it wants to
preserve it. For the definition of the Return operator, see section 15.2.3.5.1.14.

5.6 ACPI Event Programming Model
The ACPI event programming model is based on the SCI interrupt and general-purpose event (GPE)
register. ACPI provides an extensible method to raise and handle the SCI interrupt, as described in this
section.

5.6.1 ACPI Event Programming Model Components
The components of the ACPI event programming model are the following:
• ACPI driver
• Fixed ACPI Description Table (FACP)
• PM1a_STS, PM1b_STS and PM1a_EN, PM1b_EN fixed register blocks
• GPE0_BLK and GPE1_BLK register blocks
• SCI interrupt
• ACPI AML code general-purpose event model
• ACPI device-specific model events
• ACPI Embedded Controller event model

The role of each component in the ACPI event programming model is described in the following table.

Table 5-19   ACPI Event Programming Model Components

Component Description
ACPI driver Receives all SCI interrupts raised (receives all SCI events). Either

handles the event or masks the event off and later invokes an
OEM-provided control method to handle the event. Events
handled directly by the ACPI driver are fixed ACPI events;
interrupts handled by control methods are general-purpose events.

Fixed ACPI Description Table (FACP) Specifies the base address for the following fixed register blocks
on an ACPI-compatible platform: PM1x_STS and PM1x_EN
fixed registers and the GPEx_STS and GPEx_EN fixed registers.

PM1x_STS and PM1x_EN fixed registers PM1x_STS bits raise fixed ACPI events. While a PM1x_STS bit
is set, if the matching PM1x_EN bit is set, the ACPI SCI event is
raised.

GPEx_STS and GPEx_EN fixed registers GPEx_STS bits that raise general-purpose events. For every event
bit implemented in GPEx_STS, there must be a comparable bit in
GPEx_EN. Up to 256 GPEx_STS bits and matching GPEx_EN
bits can be implemented. While a GPEx_STS bit is set, if the
matching GPEx_EN bit is set, then the general-purpose SCI event
is raised.

SCI interrupt. A level-sensitive, shareable interrupt mapped to a declared
interrupt vector. The SCI interrupt vector can be shared with other
low-priority interrupts that have a low frequency of occurrence.

ACPI AML code general-purpose event
model

A model that allows OEM AML code to use GPEx_STS events.
This includes using GPEx_STS events as “wake” sources as well
as other general service events defined by the OEM (“button
pressed,” “thermal event,” “device present/not present changed,”
and so on).

ACPI device-specific model events Devices in the ACPI name space that have ACPI-specific device
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Component Description
IDs can provide additional event model functionality. In
particular, the ACPI embedded controller device provides a
generic event model.

ACPI Embedded Controller event model A model that allows OEM AML code to use the response from
the Embedded Controller Query command to provide general-
service event defined by the OEM.

5.6.2 Types of ACPI Events
At the direct ACPI hardware level, two types of events can be signaled by an SCI interrupt:
• Fixed ACPI events.
• General-purpose events.

In turn, the general-purpose events can be used to provide further levels of events to the system. And, as in
the case of the embedded controller, a well-defined second-level event dispatching is defined to make a
third type of typical ACPI event. For the flexibility common in today’s designs, two first-level general-
purpose event block are defined, and the embedded controller construct allows a large number of embedded
controller second-level event-dispatching tables to be supported. Then if needed, the OEM can also build
additional levels of event dispatching by using AML code on a general-purpose event to sub-dispatch in an
OEM defined manner.

5.6.2.1 Fixed ACPI Event Handling
When the ACPI driver receives a fixed ACPI event, it directly reads and handles the event registers itself.
The following table lists the fixed ACPI events. For a detailed specification of each event, see section 4.

Table 5-20  Fixed ACPI Events

Event Comment
Power management timer
carry bit set.

A power management timer is required for ACPI-compatible hardware. For more
information, see the description of the TMR_STS and TMR_EN bits of the
PM1x fixed register block in section 4.7.3.1 as well as the TMR_VAL register in
the PM_TMR_BLK in section 4.7.3.3.

Power button signal A power button is required for ACPI compatible platforms, but can be supplied
in two ways. One way is to simply use the fixed status bit, and the other uses the
declaration of an ACPI power device and AML code to determine the event. For
more information about the alternate-device based power button, see section
4.7.2.2.1.2.
Note that during the S0 state, both the power and sleep buttons merely notify the
OS that they were pressed.
If the system does not have a sleep button, it is recommended that the OS use the
power button to initiate sleep operations as requested by the user.

Sleep button signal A sleep button is an optional ACPI event. If supported, it can be supplied in one
of two ways. One way is to simply use the fixed status button. The other way
requires the declaration of an ACPI sleep button device and AML code to
determine the event.

RTC alarm ACPI-compatible hardware is required to have an RTC wake alarm function with
a minimum of one-month granularity; however, the ACPI status bit for the device
is optional.  If the ACPI status bit is not present, the RTC status can be used to
determine when an alarm has occurred.  For more information, see the
description of the RTC_STS and RTC_EN bits of the PM1x fixed register block
in section 4.7.3.1.

Wake status At least one system sleep state is required for an ACPI-compatible platform. The
wake status bit is used to determine when the sleeping state has been completed.
For more information, see the description of the WAK_STS and WAK_EN bits
of the PM1x fixed register block in section 4.7.3.1.
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Event Comment
System bus master request Optional. The bus-master status bit provides feedback from the hardware as to

when a bus master cycle has occurred.  This is necessary for supporting the
processor C3 power savings state.  For more information, see the description of
the BM_STS bit of the PM1x fixed register block in section 4.7.3.1.

Global release status This status is raised as a result of the global lock protocol, and is handled by the
ACPI driver as part of global lock synchronization.  For more information, see
the description of the GBL_STS bit of the PM1x fixed register block in section
4.7.3.1.  For more information on global lock, see section 5.2.6.1.

5.6.2.2 General-Purpose Event Handling

When the ACPI driver receives a general-purpose event, it either passes control to an ACPI-aware driver, or
uses an OEM-supplied control method to handle the event. An OEM can implement between zero and 255
general-purpose event inputs in hardware, each as either a level or edge event. An example of a general-
purpose event is specified in section 4, where EC_STS and EC_EN bits are defined to enable the ACPI
driver to communicate with an ACPI-aware embedded controller device driver. The EC_STS bit is set when
either an interface in the embedded controller space has generated an interrupt or the embedded controller
interface needs servicing. Note that if a platform uses an embedded controller in the ACPI environment,
then the embedded controller’s SCI output must be directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and enable
bits in Operational Regions (I/O space, memory space, PCI configuration space, or embedded controller
space). For more information, see the specification of the General-Purpose Event Blocks (GPEx_BLK) in
section 4.7.4.3.

The ACPI driver manages the bits in the GPEx blocks directly, although the source to those events is not
directly known and is connected into the system by control methods.  When the ACPI driver receives a
general-purpose event (the event is from a GPEx_BLK STS bit), the ACPI driver does the following:
1. Disables the interrupt source (GPEx_BLK EN bit).
2. If an edge event, clears the status bit.
3. Performs one of the following:

• Dispatches to an ACPI-aware device driver.
• Queues the matching control method for execution.
• Manages a wake event using device _PWR objects.

4. If a level event, clears the status bit.

5. Enables the interrupt source.

The OEM AML code can perform OEM-specific functions custom to each event the particular platform
might generate by executing a control method that matches the event. For GPE events, the ACPI driver will
execute the control method of the name \_GPE._TXX where XX is the hex value format of the event that
needs to be handled and T indicates the event handling type (T  must be either ‘E’ for an edge event or ‘L’
for a level event). The event values for status bits in GPE0_BLK start at zero (_T00) and end at the
GPE0_BLK_LEN - 1. The event values for status bits in GPE1_BLK start at GPE1_BASE and end at
GPE1_BASE + GPE1_BLK_LEN - 1. GPE0_BLK_LEN, GPE1_BASE, and GPE1_BLK_LEN are all
defined in the Fixed ACPI description table.

For the ACPI driver to manage the bits in the GPEx_BLK blocks directly:
• Enable bits must be read/write.
• Status bits must be latching.
• Status bits must be read/clear, and cleared by writing a “1” to the status bit.

5.6.2.2.1 Wake Events
An important use of the general purpose events is to implement device wake events. The components of the
ACPI event programming model interact in the following way:
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1. When a device signals its wake signal, the general-purpose status event bit used to track that device is
set.

2. While the corresponding general-purpose enable bit is enabled, the SCI interrupt is asserted.
3. If the system is sleeping, this will cause the hardware, if possible, to transition the system into the S0

state.
4. Once the system is running, ACPI will dispatch the correspond GPE handler.
5. The handler needs to determine which device object has signaled wake and performs a wake Notify

operation on the corresponding device object(s) that have asserted wake.
6. In turn the OS will notify the OS native driver(s) for each device that will wake its device to service it.

It is recommended that events that wake are not intermixed with events that do not wake on the same GPE
input. Also, all wake events not exclusively tied to a GPE input (for example, one input is shared for
multiple wake events) need to have individual enable and status bits in order to properly handle the
semantics used by the system.

5.6.2.2.2 Dispatching to an ACPI-Aware Device Driver
Certain device support, such as an embedded controller, requires a dedicated GPE to service the device.
Such GPEs are dispatched to native OS code to be handled and not to the corresponding GPE-specific
control method.

In the case of the embedded controller, the OS-native, ACPI-aware driver is given the GPE event for its
device. This driver services the embedded controller device and determines when events are reported by the
embedded controller by using the Query command. When an embedded controller event occurs, the ACPI-
aware driver queues control methods to handle each event. Another way the OEM AML code can perform
OEM-specific functions custom to each event on the particular platform is to queue a control method to
handle these events. For an embedded controller event, the ACPI drive will queue the control method of the
name _QXX, where XX is the hex format of the query code. Note that each embedded controller device can
have query event control methods.

5.6.2.2.3 Queuing the Matching Control Method for Execution
When a general-purpose event is raised, the ACPI driver uses a naming convention to determine which
control method to queue for execution and how the GPE EIO is to be handled. The GPEx_STS bits in the
GPEx_BLK are indexed with a number from 0 through FF. The name of the control method to queue for an
event raised from an enable status bit is always of the form \_GPE._Txx where xx is the event value and T
indicates the event EIO protocol to use (either edge or level). The event values for status bits in GPE0_BLK
start at zero (_T00), end at the GPE0_BLK_LEN, and correspond to each status bit index within
GPE0_BLK.   The event values for status bits in GPE1_BLK are offset by GPE_BASE and therefore start
at GPE1_BASE and end at GPE1_BASE + GPE1_BLK_LEN - 1.

For example, suppose an OEM supplies a wake event for a communications port and uses bit 4 of the
GPE0_STS bits to raise the wake event status. In an OEM-provided Definition Block, there must be a
Method declaration that uses the name \_GPE._L04 or \GPE._E04 to handle the event. An example of a
control method declaration using such a name is the following:

Method(\_GPE._L04) { // GPE 4 level wake handler
Notify (\_SB.PCIO.COM0, 2)

}

The control method performs whatever action is appropriate for the event it handles. For example, if the
event means that a device has appeared in a slot, the control method might acknowledge the event to some
other hardware register and signal a change notify request of the appropriate device object.  Or, the cause of
the general-purpose event can result from more then one source, in which case the control method for that
event determines the source and takes the appropriate action.

When a general-purpose event is raised from the GPE bit tied to an embedded controller, the embedded
controller driver uses another naming convention defined by ACPI for the embedded controller driver to
determine which control method to queue for execution. The queries that the embedded controller driver
exchanges with the embedded controller are numbered from 0 through FF, yielding event codes 01 through
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FF. (A query response of 0 from the embedded controller is reserved for “no outstanding events.”) The
name of the control method to queue is always of the form _Qxx where xx is the number of the query
acknowledged by the embedded controller. An example declaration for a control method that handles an
embedded controller query is the following:

Method(_Q34) { // embedded controller event for thermal
Notify (\_TZ.THM1, 0x80)

}

5.6.2.2.4 Managing a Wake Event Using Device _PRW Objects
A device’s _PRW object provides the zero-based bit index into the general-purpose status register block to
indicate which general-purpose status bit from either GPE0_BLK or GPE1_BLK is used as the specific
device’s wake mask. Although the hardware must maintain individual device wake enable bits, the system
can have multiple devices using the same general-purpose event bit by using OEM-specific hardware to
provide second-level status and enable bits. In this case, the OEM AML code is responsible for the second-
level enable and status bits.

The OS enables or disables the device wake function by enabling or disabling its corresponding GPE and
by executing its _PSW control method (which is used to take care of the second-level enables).  When the
GPE is asserted, the OS still executes the corresponding GPE control method that determines which device
wakes are asserted and notifies the corresponding device objects. The native OS driver is then notified that
its device has asserted wake, for which the driver powers on its device to service it.

If the system is in a sleeping state when the enabled GPE bit is asserted the hardware will transition the
system into the S0 state, if possible.

5.6.3 Device Object Notifications
Some objects need to notify the ACPI OS of various object-related events. All such notification are done
with the Notify operator that supplies the ACPI object and a notification value that signifies the type of
notification being performed. Notification values from 0 through 0x7F are common across any device
object type. Notification values of 0x80 and above are device-specific and defined by each such device. For
more information on the Notify operator, see section 15.2.3.5.1.11.

Table 5-21   Device Object Notification Types

Value Description
0 Device Check. This notification is performed on a device object to indicate to the OS that it

needs to perform the Plug and Play re-enumeration operation on the device tree starting from
the point where has been notified. The OS will only perform this operation at boot, and when
notified. It is the responsibility of the ACPI AML code to notify the OS at any other times that
this operation is required. The more accurately and closer to the actual device tree change the
notification can be done, the more efficient the operating system’s response will be; however,
it can also be an issue when a device change cannot be confirmed. For example, if the
hardware cannot notice a device change for a particular location during a system sleeping
state, it issues a Device Check notification on wake to inform the OS that it needs to check the
configuration for a device change.

1 Ejection Request. Used to notify the OS that the device’s ejection button has been pressed,
and that the OS needs to perform the Plug and Play ejection operation. This event can only be
notified in response to a physical user action to remove the device.

2 Device Wake. Used to notify the OS that the device has signaled its wake event, and that the
OS needs to notify the OS native device driver for the device. This is only used for devices
that support _PRW.

3-7F Reserved.

Below are the notification values defined for specific ACPI devices. For more information concerning the
object-specific notification, see the section on the corresponding device/object.
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Table 5-22  Control Method Battery Device Notification Values

Hex value Description
80 Battery Status Changed.  Used to notify that the control method battery device status

has changed.
81 Battery Information Changed.  Used to notify that the control method battery device

information has changed. This only occurs when a battery is replaced.
>81 Reserved.

Table 5-23  Power Source Object Notification Values

Hex value Description
80 Power Source Status Changed.  Used to notify that the power source status has

changed.
>80 Reserved.

Table 5-24  Thermal Zone Object Notification Values

Hex value Description
80 Thermal Zone Status Changed.  Used to notify that the thermal zone temperature has

changed.
81 Thermal Zone Trip points Changed.  Used to notify that the thermal zone trip points

have changed.
>81 Reserved.

Table 5-25  Control Method Power Button Notification Values

Hex value Description
80 S0 Power Button Pressed.  Used to notify that the power button has been pressed while

the system is in the S0 state. Note that when the button is pressed while the system is in
the S1-S4 state, a Device Wake notification must be issued instead.

>80 Reserved.

Table 5-26  Control Method Sleep Button Notification Values

Hex value Description
80 S0 Sleep Button Pressed.  Used to notify that the sleep button has been pressed while the

system is in the S0 state. Note that when the button is pressed while the system is in the
S1-S4 state, a Device Wake notification must be issued instead.

>80 Reserved.

Table 5-27  Control Method Lid Notification Values

Hex value Description
80 Lid Status Changed.  Used to notify that the control method lid device status has

changed.
>80 Reserved.

5.6.4 Device Class-Specific Objects
Most device objects are controlled through generic objects and control methods and they have generic
device IDs. These generic objects, control methods, and device IDs are specified in sections 6, 7, 8, 10, 11,
and 12. Section 5.6.5 lists all the generic objects and control methods defined in this specification.
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However, certain integrated devices require support for some device-specific ACPI controls. This section
lists these devices, along with the device-specific ACPI controls that can be provided.

Some of these controls are for ACPI-aware devices and as such have Plug and Play IDs that represent these
devices. The following table lists the Plug and Play IDs defined by the ACPI specification.

Table 5-28  ACPI Device IDs

Plug and Play ID Description
PNP0C08 ACPI.  Not declared in ACPI as a device. This ID is used by the operating system

the ACPI driver for the hardware resources consumed by the ACPI fixed register
spaces, and the operation regions used by AML code. It represents the core ACPI
hardware itself.

PNP0A05 Generic ACPI Bus.  A device that is only a bus whose bus settings are totally
controlled by its ACPI resource information, and otherwise needs no bus-specific
driver support.

PNP0A06 Extended IO Bus. A special case of the PNP0A05 device, where the only
difference is in the name of the device. There is no functional difference between
the two IDs.

PNP0C09 Embedded Controller Device. A host embedded controller controlled through an
ACPI-aware driver

PNP0C0A Control Method Battery.  A device that solely implements the ACPI control
method battery functions. A device that has some other primary function would use
its normal device ID. This ID is used when the devices primary function is that of
a battery.

PNP0C0B Fan.  A device that causes cooling when “on” (D0 device state).
PNP0C0C Power Button Device.  A device controlled through an ACPI-aware driver that

provides power button functionality. This device is only needed if the power button
is not supported using the fixed register space.

PNP0C0D Lid Device.  A device controlled through an ACPI-aware driver that provides lid
status functionality. This device is only needed if the lid state is not supported using
the fixed register space.

PNP0C0E Sleep Button Device.  A device controlled through an ACPI-aware driver that
provides power button functionality. This device is optional.

PNP0C0F PCI Interrupt Link Device.   A device that allocates an interrupt connected to a
PCI interrupt pin.  See section 6 for more details.

ACPI0001 SMBus Host Controller. SMBus host controller using the embedded controller
interface (as specified in section 13.9).

ACPI0002 Smart Battery Subsystem. The Smart battery Subsystem specified in section 11.

5.6.5 Defined Generic Object and Control Methods
The following table lists all the generic object and control methods defined in this specification and gives a
reference to the defining section of the specification.

Table 5-29   Defined Generic Object and Control Methods

Object Description
_ADR Device identification object that evaluates to a device’s address on its parent bus. See section

6.1.
_ACx Thermal zone object that returns Active trip point in Kelvin (to 0.1 degrees) See section 12.2.
_ALx Thermal zone object containing list of pointers to active cooling device objects. See section

12.2.
_CID Device identification object that evaluates to a device’s Plug and Play Compatible ID list. See

section 6.1.
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Object Description
_CRS Device configuration object that specifies a device’s current resource settings, or a control

method that generates such an object. See section 6.2.
_CRT Thermal zone object that returns critical trip point in Kelvin (to 0.1 degrees). See section 12.2.
_DCL Thermal zone object that returns list of pointers to Bay device objects within the thermal zone.

See section 12.2.
_DIS Device configuration control method that disables a device. See section 6.2.
_EC Control Method used to define the offset address and Query value of an SMBus host

controller defined within an embedded controller device.  See section 13.12.
_EJD Device insertion/removal object that evaluates to the name of a device object upon which a

device is dependent. Whenever the named device is ejected, the dependent device must
receive an ejection notification. See section 6.3.

_EJx Device insertion/removal control method that ejects a device. See section 6.3.
_HID Device identification object that evaluates to a device’s Plug and Play Hardware ID. See

section 6.1.
_IRC Power management object that signifies the device has a significant inrush current draw. See

section 7.3.1.
_LCK Device insertion/removal control method that locks or unlocks a device. See section 6.3.
_MSG System indicator control that indicates messages are waiting. See section 10.1.
_OFF Power resource object that sets the resource off. See section 7.4.
_ON Power resource object sets the resource on. See section 7.4.
_PCL Power source object that contains a list of pointers to devices powered by a power source. See

section 11.3.2.
_PRS Device configuration object that specifies a device’s possible resource settings, or a control

method that generates such an object. See section 6.2.
_PRW Power management object that evaluates to the device’s power requirements in order to wake

the system from a system sleeping state. See section 7.2.1
_PR0 Power management object that evaluates to the device’s power requirements in the D0 device

state (device fully on). See section 7.2.2.
_PR1 Power management object that evaluates to the device’s power requirements in the D1 device

state. Only devices that can achieve the defined D1 device state according to its given device
class would supply this level. See section 7.2.3

_PR2 Power management object that evaluates to the device’s power requirements in the D2 device
state. Only devices that can achieve the defined D2 device state according to its given device
class would supply this level. See section 7.2.4.

_PSC Power management object that evaluates to the device’s current power state. See section 7.3.3.
_PSL Thermal zone object that returns list of pointers to passive cooling device objects. See section

12.2.
_PSR Power source object that returns present power source device. See section 11.3.1.
_PSV Thermal zone object that returns Passive trip point in Kelvin (to 0.1 degrees). See section

12.2.
_PSW Power management control method that enables or disables the device’s WAKE function. See

section 7.2.
_PS0 Power management control method that puts the device in the D0 device state. (device fully

on). See section 7.2.
_PS1 Power management control method that puts the device in the D1 device state. See section

7.2.
_PS2 Power management control method that puts the device in the D2 device state. See section

7.2.
_PS3 Power management control method that puts the device in the D3 device state (device off).

See section 7.2.
_RMV Device insertion/removal object that indicates that the given device is removable. See section

6.3.
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Object Description
_SBC System indicator control method that indicates the system battery charge level. See section

10.1.
_SBS System indicator control method that indicates the system battery state. See section 10.1.
_SCP Thermal zone object that sets user cooling policy (Active or Passive). See section 12.2.
_SLN Device identification object that evaluates to the slot number for a slot. See section 6.1.4.
_STA Device insertion/removal control method that returns a device’s status. See section 6.3.
_STA Power resource object that evaluates to the current on or off state of the Power Resource. See

section 7.4.
_SRS Device configuration control method that sets a device’s settings. See section 6.2.
_SST System indicator control method that indicates the system status. See section 10.1.
_TC1 Thermal zone object that contains thermal constant for Passive cooling. See section 12.2.
_TC2 Thermal zone object that contains thermal constant for Passive cooling. See section 12.2.
_TMP Thermal zone object that returns current temperature in Kelvin (to 0.1 degrees). See section

12.2.
_TSP Thermal zone object that contains thermal sampling period for Passive cooling. See section

12.2.
_UID Device identification object that specifies a device’s unique persistent ID, or a control method

that generates it. See section 6.1.
\_PTS Power management control method used to prepare to sleep. See section 7.4.1.
\_S0 Power management package that defines system \_S0 state mode. See section 7.4.1.
\_S1 Power management package that defines system \_S1 state mode. See section 7.4.1.
\_S2 Power management package that defines system \_S2 state mode. See section 7.4.1.
\_S3 Power management package that defines system \_S3 state mode. See section 7.4.1.
\_S4 Power management package that defines system \_S4 state mode. See section 7.4.1.
\_S5 Power management package that defines system \_S5 state mode. See section 7.4.1.
\_WAK Power management control method run once system is awakened. See section 7.4.1.

5.7 OS-Defined Object Names
A list of OS-supplied object names are shown in the following table.

Table 5-30   Predefined Global Events

Name Description
\_GL Global Lock
\_OS Name of the operating system.
\_REV Revision of the AML interpreter for the specified OS.

5.7.1 \_GL Global Lock Mutex
This object is a Mutex object that behaves like a Mutex as defined in section 15.2.3.4.1.7 with the added
behavior that acquiring this Mutex also acquires the shared environment Global Lock defined in section
5.2.6.1. This allows Control Methods to explicitly synchronize with the Global Lock if necessary.

5.7.2 \_OS Name object
This object is contains a string that identifies the operating system. This value does not change with
different revisions of the AML interpreter.

5.7.3 \_REV data object
This object is contains the revision of the AML interpreter for the specified \_OS as a Dword. Larger values
are newer revisions of the interpreter.
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6. Configuration
This section specifies the objects the OS expects to be used in control methods to configure devices. There are
three types of configuration objects:
• Device identification objects associate platform devices with Plug and Play IDs
• Device configuration objects configure hardware resources for devices enumerated via ACPI.
• Device insertion and removal objects provide mechanisms for handling dynamic insertion and removal of

devices.

This section also defines the ACPI device resource descriptor formats. Device resource descriptors are used as
parameters by some of the device configuration control method objects.

6.1 Device Identification Objects
Device Identification Objects associate each platform device with a Plug and Play device ID for each device. All
the Device Identification Objects are listed in the following table:

Table 6-1  Device Identification Objects

Object Description
_ADR Object that evaluates to a device’s address on its parent bus.
_CID Object that evaluates to a device’s Plug and Play Compatible ID list.
_HID Object which evaluates to a device’s Plug and Play Hardware ID.
_SUN Object that evaluates to the slot UI number for a slot.
_UID Object that specifies a device’s unique persistent ID, or a control method that generates it.

For any device that is not on an enumerable type of bus (for example, an ISA bus), the ACPI driver enumerates
the devices’ Plug and Play ID(s) and the ACPI BIOS must supply a _HID object (plus an optional _CID object)
for each device to enable the ACPI driver to do that. For devices on an enumerable type of bus, such as a PCI
bus, the ACPI system needs to identify which device on the enumerable bus is identified by a particular Plug and
Play ID; the ACPI BIOS must supply an _ADR object for each device to enable this.

6.1.1 _ADR
This object is used to supply the OS with the address of a device on its parent bus. An _ADR object must be
used to specify the address of any device on a bus that has a standard enumeration algorithm.

An _ADR object can be used to provide capabilities to the specified address even if a device is not present.
This allows the system to provide capabilities to a slot on the parent bus..

The OS infers the parent bus from the location of the _ADR object’s Device Package in the ACPI name space.
For more information about the positioning of Device Packages in the ACPI name space, see “Named Object
Creation Encodings.”

_ADR object information must be static, and can be defined for the following bus types listed in the following
table.

Table 6-2  _ADR Object Bus Types

BUS Address encoding
EISA EISA slot number 0 - F
IDE Controller 0=Primary Channel, 1=Secondary Channel
IDE Channel 0=Master drive, 1=Slave drive
PCI High word = Device #, Low word = Function #. (e.g., device

3, function 2 is 0x00030002). To refer to all the functions on
a device #, use a function number of FFFF).

PCMCIA Socket #; 0=First Socket
PC CARD Socket #; 0=First Socket
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BUS Address encoding
SMB Lowest Slave Address

6.1.2 _CID
This optional object is used to supply the OS with a device’s Plug and Play compatible device ID. Use _CID
objects when a device has no other defined hardware standard method to report its compatible IDs.
A _CID object evaluates to a compatible device ID, or a package of compatible device IDs, for the device in the
order of preference. A compatible ID must be either a numeric 32-bit compressed EISA type ID or a PCI ID.
The format of PCI IDs is one of the following:

PCI\CC_ccss
PCI\CC_ccsspp
PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss&REV_rr
PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss
PCI\VEN_vvvv&DEV_dddd&REV_rr
PCI\VEN_vvvv&DEV_dddd

where:
cc = hexadecimal representation of the Class Code byte
ss = hexadecimal representation of the Subclass Code byte
pp = hexadecimal representation of the Programming interface byte
vvvv = hexadecimal representation of the Vendor ID
dddd = hexadecimal representation of the Device ID
ssssssss = hexadecimal representation of the Subsystem ID
rr = hexadecimal representation of the Revision byte

A compatible ID retrieved from a _CID object  is only meaningful if it is a non-NULL value.

6.1.3 _HID
This object is used to supply the OS with the device’s Plug and Play Hardware ID. When describing a platform,
use of any _HID objects is optional. However, a _HID object must be used to describe any device that will be
enumerated by the ACPI driver. The ACPI driver only enumerates a device when no bus enumerator can detect
the device ID. For example, devices on an ISA bus are enumerated by the ACPI driver. Use the _ADR object to
describe devices enumerated by bus enumerators other than the ACPI driver.
A _HID object evaluates to either a numeric 32-bit compressed EISA type ID or a string.

6.1.4 _SUN
_SUN is used by the OS user interface to identify slots for the user. For example, this can be used for battery
slots, PCMCIA slots, or swappable bay slots to inform the user of what devices are in each slot.  _SUN
evaluates to a DWORD which is the number to be used in the user interface. This number must match any slot
number printed on the physical slot.

6.1.5 _UID
This object provides the OS with a serial number-style ID of a device (or battery) which does not change across
reboots. This object is optional, but is required when the device has no other way to report a persistent unique
device ID. When a system has two devices that report the same _HID, each device must have a _UID object.
When reported, the UID only needs to be unique amongst all devices with the same device ID. The OS typically
uses the unique device ID to ensure that the device- specific information, such as network protocol binding
information, is remembered for the device even if its relative location changes. For most integrated devices, this
object contains a unique identifier. For other devices, like a docking station, this object can be a control method
which returns the unique docking station ID.

A _UID object evaluates to either a numeric value or a string.
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6.2 Device Configuration Objects
Device configuration objects are used to configure hardware resources for devices enumerated via ACPI. Device
Configuration objects provide information about current and possible resource requirements, the relationship
between shared resources, and methods for configuring hardware resources. Note: these objects must only be
provided for devices that cannot be configured by any other hardware standard such as PCI, PCMCIA, etc.

When the ACPI driver enumerates a device, it will call _PRS to determine the resource requirements of the
device. It may also call _CRS to find the current resource settings for the device. Using this information, the
Plug and Play system will determine what resources the device should consume and set those resources by
calling the device’s _SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide resources (for example, a
proprietary PCI bridge), or do both. Unless otherwise specified, resources for a device are assumed to be taken
from the nearest matching resource above the device in the device hierarchy.

Some resources, however, may be shared amongst several devices. To describe this, devices that share a
resource (resource consumers) must use the extended resource descriptors (0x7-0xA) described in section 6.4.3.
These descriptors point to a single device object (resource producer) that claims the shared resource in it’s
_PRS. This allows the OS to clearly understand the resource dependencies in the system and move all related
devices together if it needs to change resources. Further, it allows the OS to only allocate resources to resource
producers when devices that consume that resource appear.

The device configuration objects are listed in the following table.

Table 6-3  Device Configuration Objects

Object Description
_CRS An object that specifies a device’s current resource settings, or a control method that generates

such an object.
_DIS A control method that disables a device.
_PRS An object that specifies a device’s possible resource settings, or a control method that

generates such an object.
_PRT An object that specifies the PCI interrupt Routing Table.
_SRS A control method that sets a device’s settings.

6.2.1 _CRS
This required object evaluates to a byte stream that describes the system resources currently allocated to a
device. If a device is disabled, then _CRS returns a valid resource template for the device, but the actual
resource assignments in the return byte stream will be ignored. If the device is disabled when _CRS is called, it
must remain disabled.
The format of the data contained in a _CRS object follows the formats defined in section 6.4, a compatible
extension of the formats specified in the PNPBIOS Specification. The resource data is provided as a series of
data structures, with each of the resource data structures having a unique tag or identifier.  The resource
descriptor data structures specify the standard PC system resources, such as memory address ranges, I/O ports,
interrupts, and DMA channels.

Arguments:
None.

Result Code:
Byte stream.

6.2.2 _DIS
This control method disables a device. When the device is disabled, it must not be decoding any hardware
resources. Prior to running this control method, the OS will have already put the device in the D3 state.
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When a device is disabled via the _DIS, the _STA control method for this device must return with the Disabled
bit set.

Arguments:
None.

Result Code:
None.

6.2.3 _PRT
PCI interrupts are inherently non-heirarchical. PCI interrupt pins are typically wired together to four interrupt
vectors in the interrupt controller.  PRT provides a mapping table from PCI interrupt pins to the interrupt vectors
the pins are connected to.  PRT is a package that contains a list of packages, each of which describes the
mapping of an interrupt pin. These mapping packages have the following fields:

Table 6-4  Mapping Fields

Field Type Description
Address DWORD The address of the device (uses the same format as _ADR)
Pin BYTE The PCI pin number of the device (0=INTA, 1=INTB, 2=INTC, 3=INTD)
Source Name Name of a the device that allocates the interrupt the above pin is connected to.  If

this field is null, then the interrupt is allocated from the global interrupt vector pool.
Source
Index

BYTE An index that indicates which resource descriptor in the resource template of the
device pointed to in Source this interrupt is allocated from.  If Source is null, this
field is the interrupt vector number the pin is connected to.

There are two ways that _PRT can be used.  Typically, the vector that a given PCI interrupt is on is
configurable.  For example, a given PCI interrupt might be configured for either IRQ 10 or 11 on an 8259
interrupt controller.  In this model, each interrupt is represented in the ACPI namespace as a device object.
These objects have _PRS, _CRS, _SRS, and _DIS control methods to allocate the interrupt vectors.  Then, the
PCI driver handles the interrupts not as interrupt vectors on the interrupt controller, but as PCI interrupt pins.
The driver looks up the device’s pins in the _PRT to determine which device objects allocate the interrupts.  To
move the PCI interrupt to different vectors on the interrupt controller, the OS will use _PRS, _CRS, _SRS, and
_DIS control methods for the interrupt’s device object.
In the second model, the PCI interrupts are hard-wired to specific interrupt vectors on the interrupt controller
and are not configurable.  In this case, the Source field in _PRT does point to a device, but is null, and the
Source Index field contains the global interrupt vector that the PCI interrupt is hard wired to.

6.2.3.1 Example: Using _PRT to describe PCI IRQ routing
The following example describes two PCI slots and a PCI video chip.  Note that the interrupts on the two PCI
slots are wired up differently (barber polled).
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Scope(_\SB) {
Device(LNKA){

Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
Name(_UID, 1)
Name(_PRS, ResourceTemplate(){

Interrupt(ResourceProducer,…) {10,11}  // IRQs 10,11
})
Method(_DIS) {…}
Method(_CRS) {…}
Method(_SRS, 1) {…}

}
Device(LNKB){

Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
Name(_UID, 2)
Name(_PRS, ResourceTemplate(){

Interrupt(ResourceProducer,…) {11,12}  // IRQs 11,12
})
Method(_DIS) {…}
Method(_CRS) {…}
Method(_SRS, 1) {…}

}
Device(LNKC){

Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
Name(_UID, 3)
Name(_PRS, ResourceTemplate(){

Interrupt(ResourceProducer,…) {12,14}  // IRQs 12,14
})
Method(_DIS) {…}
Method(_CRS) {…}
Method(_SRS, 1) {…}

}
Device(LNKD){

Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
Name(_UID, 4)
Name(_PRS, ResourceTemplate(){

Interrupt(ResourceProducer,…) {10,15}  // IRQs 10,15
})
Method(_DIS) {…}
Method(_CRS) {…}
Method(_SRS, 1) {…}

}
Device(PCI0){

…
Name(_PRT, Package{

Package{0x0004ffff, 0, LNKA, 0},  // Slot 1, INTA
Package{0x0004ffff, 1, LNKB, 0},  // Slot 1, INTB
Package{0x0004ffff, 2, LNKC, 0},  // Slot 1, INTC
Package{0x0004ffff, 3, LNKD, 0},  // Slot 1, INTD
Package{0x0005ffff, 0, LNKB, 0},  // Slot 2, INTA
Package{0x0005ffff, 1, LNKC, 0},  // Slot 2, INTB
Package{0x0005ffff, 2, LNKD, 0},  // Slot 2, INTC
Package{0x0005ffff, 3, LNKA, 0},  // Slot 2, INTD
Package{0x0006ffff, 0, LNKC, 0}   // Video, INTA

})
}

}

6.2.4 _PRS

This optional object evaluates to a byte stream that describes the possible resource settings for the device. When
describing a platform, specify a _PRS for all the configurable devices. Static (non-configurable) devices do not
specify a _PRS object. The information in this package is used by the OS to select  a conflict-free resource
allocation without user intervention.
The format of the data in a _PRS object follows the same format as the _CRS object (for more information, see
the _CRS object definition).

If the device is disabled when _PRS is called, it must remain disabled.

Arguments:
None.
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Result Code:
Byte stream.

6.2.5 _SRS
This optional control method takes one byte stream argument that specifies a new resource allocation for a
device. The resource descriptors in the byte stream argument must be specified in the same order as listed in the
_CRS byte stream (for more information, see the _CRS object definition). A _CRS object can be used as a
template to ensure that the descriptors are in the correct format.

The settings must take effect before the _SRS control method returns.

If the device is disabled, _SRS will enable the device at the specified resources. _SRS is not used to disable a
device; use the _DIS control method instead.

Arguments:
Byte stream.

Result Code:
None.

6.3 Device Insertion and Removal Objects
Device insertion and removal objects provide mechanisms for handling dynamic insertion and removal of
devices. These same mechanisms are used for docking and undocking. These objects give information about
whether or not devices are present, which devices are physically in the same device (independent of which bus
the devices live on), and methods for controlling ejection or interlock mechanisms.

The system is more stable when removable devices have a software-controlled, VCR-style ejection mechanism
instead of a “surprise-style” ejection mechanism. In this system, the eject button for a device does not
immediately remove the device, but simply signals the operating system. The OS then shuts down the device,
closes open files, unloads the driver, and sends a command to the hardware to eject the device.

In ACPI, the sequence of events for dynamically inserting a device follows the process below. Note that this
process supports hot, warm, and cold insertion of devices.
1. If the device is physically inserted while the computer is in the working state (i.e., hot insertion), the

hardware generates an SCI general purpose event.
2. The _ control method for the event uses the Notify(device,0) command to inform the OS of which bus the

new device is on, or the device object for the new device. If the Notify command points to the device object
for the new device, the control method must have changed the device’s status returned by _STA to indicate
that the device is now present. Performance can be optimized by having Notify point as closely as possible
in the hierarchy to where the new device resides. The Notify command can also be used from the _WAK
control method (for more information about _WAK, see section 7.5.3) to indicate device changes that may
have occurred while the computer was sleeping.  For more information about the Notify command, see
section 5.6.3.

3. The OS uses the identification and configuration objects to identify, configure, and load a device driver for
the new device and any devices found below the device in the hierarchy.

4. If the device has a _LCK control method, the OS may later run this control method to lock the device.

The new device referred to in step 2 need not be a single device, but could be a whole tree of devices. For
example, it could point to the PCI-PCI bridge docking connector. The OS will then load and configure all
devices in found below that bridge. The control method can also point to several different devices in the
hierarchy if the new devices do not all live under the same bus. (i.e. more than one bus goes through the
connector).

For removing devices, ACPI supports both hot removal (system is in the S0 state), and warm removal (system is
in a sleep state: S1-S4). This is done using the _EJx control methods. Devices that can be ejected include an
_EJx control method for each sleeping state the device supports (a maximum of 2 _EJx objects can be listed).
For example, hot removal devices would supply an _EJ0; warm removal devices would use one of _EJ1-EJ4.
These control methods are used to signal the hardware when an eject is to occur.
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The sequence of events for dynamically removing a device goes as follows:
1. The eject button is pressed and generates an SCI general purpose event. (If the system was in a sleeping

state, it should wake the computer.
2. The control method for the event uses the Notify(device, 1) command to inform the OS which specific

device the user has requested to eject. Notify does not need to be called for every device that may be
ejected, but for the top level device. Any child devices in the hierarchy or any ejection dependent devices
on this device (as described by _EJD, below) will automatically be removed.

3. The operating system will shut down and unload devices that will be removed.
4. If the device has a _LCK control method, the OS will run this control method to unlock the device.
5. The operating system looks to see what _EJx control methods are present for the device. If the removal

event will cause the system to switch to battery power (i.e. an undock) and the battery is low, dead, or not
present, the OS will use the lowest supported sleep state _EJx listed; otherwise it will use the highest state
_EJx. Having made this decision, the OS will run the appropriate _EJx control method to prepare the
hardware for eject.

6. If the removal will be a warm removal, the OS puts the system in the appropriate Sx state. If the removal
will be a hot removal, the OS skips to step 8, below.

7. When the hardware is put into the sleep state, it can use any motors, etc to eject the device. Immediately
after ejection, the hardware will wake the computer to an S0 state. If the system was sleeping when the eject
notification came in, the operating system will return the computer to a sleeping state consistent with the
user’s wakeup settings.

8. The OS will call _STA to determine if the eject successfully occurred. (In this case, control methods do not
need to call Notify() to tell the OS of the change in _STA) If there were any mechanical failures, _STA will
return 3: device present and not functioning, and the OS will inform the user of the problem.

Note: this mechanism is the same for removing a single device as well as for removing several devices, as in an
undock.

ACPI does not disallow surprise-style removal of devices; however, this type of removal is not recommended
since system and data integrity cannot be guaranteed when a surprise-style removal occurs. Because the
operating system is not informed, its device drivers cannot save data buffers and it cannot stop accesses to the
device before the device is removed. To handle surprise-style removal a general purpose event must be raised.
Its associated control method must use the Notify command to indicate which bus the device was removed from.

The Device insertion and removal objects are listed in the following table.

Table 6-5  Device Insertion and Removal Objects

Object Description
_EJD Object that evaluates to the name of a device object upon which a device is dependent.

Whenever the named device is ejected, the dependent device must receive an ejection
notification.

_EJx A control method that ejects a device.
_LCK A control method that locks or unlocks a device.
_RMV Object that indicates that the given device is removable.
_STA A control method that returns a device’s status

6.3.1 _EJD
This object is used to name the device object of another device upon which a device is dependent and is
primarily used to support docking stations. Whenever the named device is ejected, the dependent device will
also receive an ejection notification.

An _EJD object evaluates to the name of another device object.  This object’s EJx methods will be used to eject
all the dependent devices.  Devices that have an _EJD object cannot have any _EJx control methods.

A device’s dependents will be ejected when the device itself is ejected.
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When describing a platform that includes a docking station, usually more than one _EJD object will be required.
For example, if a dock attaches both a PCI device and an ACPI-configured device to a portable, then both the
PCI device description package and the ACPI-configured device description package must include an _EJD
object that evaluates to the name of the docking station (the name specified in an _ADR or _HID object in the
docking station’s description package). Thus, when the docking connector submits an eject notify (_EJN)
request, the OS would first attempt to disable and unload the drivers for both the PCI and ACPI configured
devices.

6.3.2 _EJx
These control method are optional and are only supplied for a device which supports a software-controlled
VCR-style ejection mechanism. To support warm and hot removal, an _EJx control method is listed for each
sleep state the device supports removal from, where x is the sleeping state supported. For example, _EJ0
indicates the device supports hot removal; _EJ1-EJ4 indicate the device supports warm removal.

For hot removal, the device must be immediately ejected when the OS calls the _EJ0 control method. The _EJ0
control method does not return until ejection is complete. After calling _EJ0, the OS will call _STA to
determine whether or not the eject succeeded.

For warm removal, the _EJ1-_EJ4 control methods do not cause the device to be immediately ejected. Instead,
they only set proprietary registers to prepare the hardware to eject when the system goes into the given sleep
state. The hardware ejects the device only after the OS has put the system into a sleep state by writing to the
SLP_EN register. After the system resumes, the OS will call _STA to determine if the eject succeeded.

The _EJx control methods take one parameter to indicate whether eject should be enabled or disabled:

1 = Hot eject or enable warm eject.
0 = Disable (cancel) warm eject (EJ0 will never be called with this value).

A device object may have at most 2 _EJx control methods. First, it lists an EJx control method for the preferred
sleeping state to eject the device.  Optionally, the device may list an EJ4 or EJ5 control method to be used when
the system will not have power (e.g. no battery) after the eject. For example, a hot-docking notebook might list
_EJ0 and _EJ5.

6.3.3 _LCK
This control method is optional and is only required for a device which supports a software-controlled locking
mechanism. When the operating software invokes this control method, the associated device is to be locked or
unlocked based upon the value of the argument that is passed. On a lock request, the control method must not
complete until the device is completely locked.

The _LCK control method takes one parameter that indicates whether or not the device should be locked:

1 = Lock the device
0 = Unlock the device

When describing a platform, devices use either a _LCK control method or an _EJx control method for a device.

6.3.4 _RMV
The _RMV object indicates to the OS that the device can be removed while the system is in the working state
(i.e., any device that only supports surprise-style removal). Any such removable device that does not have _LCK
or _EJx control methods must have an _RMV object. This allows the OS to indicate to the user that the device
can be removed and for the OS to provide a way for shutting down this device before removing it.

6.3.5 _STA
This object returns the status of a device, which can be one of the following: Enabled, Disabled, or Removed.

Arguments:
None.
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Result Code (bitmap):
bit 0: Set if the device is present
bit 1: Set if the device is enabled and decoding its resources
bit 2: Set if the device should be shown in the user interface
bit 3: Set if the device is functioning properly (cleared if the device failed its diagnostics)
bits 4:31: Reserved (must be cleared)

If bit 0 is cleared, then bit 1 must also be cleared (i.e., a device that is not present cannot be enabled).

A device can only decode its hardware resources if both bits 0 and 1 are set. If the device is not present (bit 0
cleared) or not enabled (bit 1 cleared), then the device must not decode its resources.

If a device is present in the machine, but should not be displayed in the OS user interface, bit 2 is set. For
example, a notebook could have joystick hardware in the notebook (thus it is present and decoding its
resources), but the connector for plugging in the joystick requires a port replicator. If the port replicator is not
plugged in, the joystick should not appear in the UI.

If a device object does not have an _STA object, then the OS will assume that all of the above bits are set (i.e.
the device is Present, Enabled, Shown in the UI, and Functioning).

6.4 Resource Data Types for ACPI
The _CRS, _PRS, and _SRS control methods use packages of resource descriptors to describe the resource
requirements of devices.

6.4.1 ASL Macros for Resource Descriptors
ASL includes some macros for creating resource descriptors.  The ResourceTemplate macro creates Buffer for
in which resource descriptor macros can be listed.  The ResourceTemplate macro automatically generates an
End descriptor and calculates the checksum for the resource template. The format for the ResourceTemplate
macro is as follows:

ResourceTemplate()
{

// List of resource macros
}

The following is an example of how these macros can be used to create a resource template that can be returned
from a _PRS control method:

ResourceTemplate()
{

StartDependentFn(1,1)
{

IRQ(Level, ActiveLow, Shared){10, 11}
DMA(TypeF, NotBusMaster, Transfer16){4},
IO(Decode16, 0x1000, 0x2000, 0, 0x100),
IO(Decode16, 0x5000, 0x6000, 0, 0x100, IO1),

}
StartDependentFn(1,1)
{

IRQ(Level, ActiveLow, Shared){}
DMA(TypeF, NotBusMaster, Transfer16){5},
IO(Decode16, 0x3000, 0x4000, 0, 0x100),
IO(Decode16, 0x5000, 0x6000, 0, 0x100, IO2),

}
EndDependentFn()

}

Occasionally, it is necessary to change a parameter of a descriptor in an existing resource template.  To facilitate
this, the descriptor macros optionally include a name declaration that can be used later to refer to the descriptor.
When a name is declared with a descriptor, the ASL compiler will automatically create field names under the
given name to refer to individual fields in the descriptor.
For example, given the above resource template, the following code changes the minimum and maximum
addresses for the IO descriptor named IO2:
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Store(0xA000, IO2._MIN)
Store(0xB000, IO2._MAX)

The resource template macros for each of the resource descriptors are listed below, after the table that defines
the resource descriptor. The resource template macros are formally defined in section 15.

The reserved names (such as _MIN and _MAX) for the fields of each resource descriptor are defined in the
appropriate table entry of the table that defines that resource descriptor.

6.4.2 Small Resource Data Type
A small resource data type may be 2 to 8 bytes in size and adheres to the following format:

Table 6-6   Small Resource Data Type Tag Bit Definitions

Offset Field
Byte 0 Tag Bit[7] Tag Bits[6:3] Tag Bits [2:0]

Type = 0 Small item name Length = n bytes
Bytes 1 to n Data bytes

The following small information items are currently defined for Plug and Play devices:

Table 6-7   Small Resource Items

Small Item Name Value
Reserved 0x1
Reserved 0x2
Reserved 0x3
IRQ format 0x4
DMA format 0x5
Start dependent Function 0x6
End dependent Function 0x7
I/O port descriptor 0x8
Fixed location I/O port descriptor 0x9
Reserved 0xA - 0xD
Vendor defined 0xE
End tag 0xF

6.4.2.1 IRQ Format (Type 0, Small Item Name 0x4, Length=2 or 3)
The IRQ data structure indicates that the device uses an interrupt level and supplies a mask with bits set
indicating the levels implemented in this device. For standard PC-AT implementation there are 15 possible
interrupts so a two byte field is used. This structure is repeated for each separate interrupt required.

Table 6-8   IRQ Descriptor Definition

Offset Field Name
Byte 0 Value = 0010001nB (Type = 0, small item name = 0x4,  length = (2 or 3))
Byte 1 IRQ mask bits[7:0], _INT.

Bit[0] represents IRQ0, bit[1] is IRQ1, and so on.
Byte 2 IRQ mask bits[15:8] , _INT.

Bit[0] represents IRQ8, bit[1] is IRQ9, and so on.
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Offset Field Name
Byte 3 IRQ Information.  Each bit, when set, indicates this device is capable of driving a

certain type of interrupt. (Optional--if not included then assume  edge sensitive,
high true interrupts)
NOTE: These bits can be used both for reporting and setting IRQ resources.
Bit[7:5] Reserved and must be 0
Bit[4]     Interrupt is sharable, _SHR
Bit[3] Low true level sensitive, _LL
Bit[2:1] Ignored
Bit[0] High true edge sensitive, _HE

NOTE:  Low true, level sensitive interrupts may be electrically shared, the process of how this might work
is beyond the scope of this specification.
NOTE: If byte 3 is not included, High true, edge sensitive, non shareable is assumed.

6.4.2.1.1 ASL Macro for IRQ Descriptor
The following macro generates a short IRQ descriptor with optional IRQ Information byte:

IRQ(
Edge | Level, // _LL, _HE
ActiveHigh | ActiveLow, // _LL, _HE
Shared | Exclusive | Nothing, // _SHR, Nothing defaults to Exclusive
NameString | Nothing // A name to refer back to this resource
)
{
ByteConst [, ByteConst ...] // List of IRQ numbers (valid values: 0-15)
}

The following macro generates a short IRQ descriptor without optional IRQ Information byte:

IRQNoFlags(
NameString | Nothing // A name to refer back to this resource
)
{
ByteConst [, ByteConst ... ] // list of IRQ numbers (valid values: 0-15)
}

6.4.2.2 DMA Format (Type 0, Small Item Name 0x5, Length=2)
The DMA data structure indicates that the device uses a DMA channel and supplies a mask with bits set
indicating the channels actually implemented in this device.  This structure is repeated for each separate channel
required.

Table 6-9   DMA Descriptor Definition

Offset Field Name
Byte 0 Value = 00101010B (Type = 0, small item name = 0x5,  length = 2)
Byte 1 DMA channel mask bits[7:0], _DMA

Bit[0] is channel 0.
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Offset Field Name
Byte 2 Bit[7] Reserved and must be 0

Bits[6:5] DMA channel speed supported, _TYP
Status
00 Indicates compatibility mode
01 Indicates Type A DMA as described in the EISA

                            Specification
10 Indicates Type B DMA
11 Indicates Type F

Bit[4:3] Ignored

Bit[2] Logical device bus master status, _BM
Status
0 Logical device is not a bus master
1 Logical device is a bus master

Bits[1:0] DMA transfer type preference , _SIZ
Status
00 8-bit only
01 8- and 16-bit
10 16-bit only
11 Reserved

6.4.2.2.1 ASL Macro for DMA Descriptor
The following macro generates a short DMA descriptor.

DMA(
Compatibility | TypeA | TypeB | TypeF, // _TYP, DMA channel speed
BusMaster | NotBusMaster, // _BM, Nothing defaults to BusMaster
Transfer8 | Transfer16 | Transfer8_16 // _SIZ, Transfer size
NameString | Nothing // A name to refer back to this resource
)
{
ByteConst [, ByteConst ...] // List of channel numbers

//(valid values: 0-17)
}

6.4.2.3 Start Dependent Functions (Type 0, Small Item Name 0x6, Length=0 or
1)
Each logical device requires a set of resources.  This set of resources may have interdependencies that need to
be expressed to allow arbitration software to make resource allocation decisions about the logical device.
Dependent functions are used to express these interdependencies. The data structure definitions for dependent
functions are shown here. For a detailed description of the use of dependent functions refer to the next section.

Table 6-10   Start Dependent Functions

Offset Field Name
Byte 0 Value = 0_0110_00nB (Type = 0, small item name = 0x6,  length =(0 or 1))

Start Dependent Function fields may be of length 0 or 1 bytes. The extra byte is optionally used to denote the
compatibility or performance/robustness priority for the resource group following the Start DF tag. The
compatibility priority is a ranking of configurations for compatibility with legacy operating systems. This is the
same as the priority used in the PNPBIOS interface. For example, for compatibility reasons, the preferred
configuration for COM1 is IRQ4, I/O 3F8-3FF. The performance/robustness performance is a ranking of
configurations for performance and robustness reasons. For example, a device may have a high-performance,
bus mastering configuration that may not be supported by legacy operating systems. The bus-mastering
configuration would have the highest performance/robustness priority while it’s polled I/O mode might have the
highest compatibility priority.
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If the Priority byte is not included, this indicates the dependent function priority is ‘acceptable’. This byte is
defined as:

Table 6-11   Start Dependent Function Priority Byte Definition

Bits Definition
1:0 Compatibility priority. Acceptable values are:

0 =   Good configuration - Highest Priority and preferred configuration
1 =   Acceptable configuration - Lower Priority but acceptable configuration
2 =   Sub-optimal configuration - Functional configuration but not optimal
3 =   Reserved

3:2 Performance/robustness. Acceptable values are:
0 =   Good configuration - Highest Priority and preferred configuration
1 =   Acceptable configuration - Lower Priority but acceptable configuration
2 =   Sub-optimal configuration - Functional configuration but not optimal
3 =   Reserved

7:4 Reserved; must be 0

Note that if multiple Dependent Functions have the same priority, they are further prioritized by the order in
which they appear in the resource data structure. The Dependent Function which appears earliest (nearest the
beginning) in the structure has the highest priority, and so on.

6.4.2.3.1 ASL Macro for Start Dependent Function Descriptor
The following macro generates a Start Dependent Function descriptor with the optional priority byte:

StartDependentFn(
ByteConst, // Compatibility priority (valid values: 0-2)
ByteConst // Performance/Robustness priority  (valid values: 0-2)
)
{
// List of descriptors for this dependent function
}

The following macros generates a Start Dependent Function descriptor without the optional priority byte

StartDependentFnNoPri(
)
{
Descriptors
}

6.4.2.4 End Dependent Functions (Type 0, Small Item Name 0x7, Length=0)

Table 6-12   End Dependent Functions

Offset Field Name
Byte 0 Value = 0_0111_000B (Type = 0, small item name = 0x7  length =0)

Note that only one End Dependent Function item is allowed per logical device.  This enforces the fact that
Dependent Functions cannot be nested.

6.4.2.4.1 ASL Macro for End Dependent Functions descriptor
The following macro generates an End Dependent Functions descriptor:

EndDependentFn(
)

6.4.2.5 I/O Port Descriptor (Type 0, Small Item Name 0x8, Length=7)
There are two types of descriptors for I/O ranges. The first descriptor is a full function descriptor for
programmable devices. The second descriptor is a minimal descriptor for old ISA cards with fixed I/O
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requirements that use a 10-bit ISA address decode. The first type descriptor can also be used to describe fixed
I/O requirements for ISA cards that require a 16-bit address decode. This is accomplished  by setting the range
minimum base address and range maximum base address to the same fixed I/O value.

Table 6-13   I/O Port Descriptor Definition

Offset Field Name Definition
Byte 0 I/O port descriptor Value = 01000111B (Type = 0, Small item name =

0x8, Length = 7)
Byte 1 Information Bits[7:1] are reserved and must be 0

Bit[0] (_DEC)
If set, indicates the logical device decodes 16-bit
addresses. If bit[0] is not set, this indicates the logical
device only decodes address bits[9:0].

Byte 2 Range minimum base
address, _MIN
bits[7:0]

Address bits[7:0] of the minimum base I/O address
that the card may be configured for.

Byte 3 Range minimum base
address, _MIN
bits[15:8]

Address bits[15:8] of the minimum base I/O address
that the card may be configured for.

Byte 4 Range maximum base
address, _MAX
bits[7:0]

Address bits[7:0] of the maximum base I/O address
that the card may be configured for.

Byte 5 Range maximum base
address, _MAX
bits[15:8]

Address bits[15:8] of the maximum base I/O address
that the card may be configured for.

Byte 6 Base alignment, _ALN Alignment for minimum base address, increment in 1
byte blocks.

Byte 7 Range length, _LEN The number of contiguous I/O ports requested.

6.4.2.5.1 ASL Macros for IO Port Descriptor
The following macro generates a short IO descriptor:

IO(
Decode16 | Decode10, // _DEC
WordConst, // _MIN, Address minimum
WordConst, // _MAX, Address max
ByteConst, // _ALN, Base alignment
ByteConst // _LEN, Range length
NameString | Nothing // A name to refer back to this resource

)

6.4.2.6 Fixed Location I/O Port Descriptor (Type 0, Small Item Name 0x9,
Length=3)
This descriptor is used to describe 10-bit I/O locations.

Table 6-14   Fixed-Location I/O Port Descriptor Definition

Offset Field Name Definition
Byte 0 Fixed Location I/O port

descriptor
Value = 01001011B (Type = 0, Small item name =
0x9, Length = 3)

Byte 1 Range base address, _BAS
bits[7:0]

Address bits[7:0] of the base I/O address that the card
may be configured for. This descriptor assumes a 10
bit ISA address decode.
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Offset Field Name Definition
Byte 2 Range base address, _BAS

bits[9:8]
Address bits[9:8] of the base I/O address that the card
may be configured for. This descriptor assumes a 10
bit ISA address decode.

Byte 3 Range length, _LEN The number of contiguous I/O ports requested.

6.4.2.6.1 ASL Macro for Fixed IO Port Descriptor
The following macro generates a short Fixed IO descriptor:

FixedIO(
WordConst, // _BAS, Address base
ByteConst // _LEN, Range length
NameString | Nothing // A name to refer back to this resource
)

6.4.2.7 Vendor Defined (Type 0, Small Item Name 0xE, Length=1-7)
The vendor defined resource data type is for vendor use.

Table 6-15   Vendor-Defined  Resource Descriptor Definition

Offset Field Name
Byte 0 Value = 01110nnnB (Type = 0, small item name = 0xE,  length = (1-7))
Byte 1 to 7 Vendor defined

6.4.2.7.1 ASL Macro for Vendor Defined Descriptor
The following macro generates a short vendor specific descriptor:

VendorShort(
NameString | Nothing // A name to refer back to this resource
)
{
ByteConst [, ByteConst ...] // List of bytes, up to 7 bytes
}

6.4.2.8 End Tag (Type 0, Small Item Name 0xF, Length 1)
The End tag identifies an end of resource data. Note: If the checksum field is zero, the resource data is treated as
if the checksum operation succeeded. Configuration proceeds normally.

Table 6-16   End Tag Definition

Offset Field Name
Byte 0 Value = 01111001B (Type = 0, small item name = 0xF,  length = 1)
Byte 1 Check sum covering all resource data after the serial identifier. This check sum is

generated such that adding it to the sum of all the data bytes will produce a zero
sum.

6.4.2.8.1 ASL Macro for End Tag
The End Tag is automatically generated by the ASL compiler at the end of the ResourceTemplate statement.

6.4.3 Large Resource Data Type
To allow for larger amounts of data to be included in the configuration data structure the large format is shown
below. This includes a 16-bit length field allowing up to 64 K of data.
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Table 6-17  Large Resource Data Type Tag Bit Definitions

Offset Field Name
Byte 0 Value = 1xxxxxxxB (Type = 1, Large item name = xxxxxxx)
Byte 1 Length of data items bits[7:0]
Byte 2 Length of data items bits[15:8]
Bytes 3 to n Actual data items

There following large information items are currently defined for Plug and Play ISA devices:

Table 6-18   Large Resource Items

Large Item Name Value
24-bit memory range descriptor 0x1
Reserved 0x2
Reserved 0x3
Vendor defined 0x4
32-bit memory range descriptor 0x5
32-bit fixed location memory range descriptor 0x6
DWORD address space descriptor 0x7
WORD address space descriptor 0x8
Extended IRQ descriptor 0x9
Reserved 0xA - 0x7F

6.4.3.1 24-Bit Memory Range Descriptor (Type 1, Large Item Name 0x1)
The 24-bit memory range descriptor describes a device’s memory range resources within a 24-bit address space.

Table 6-19   Large Memory Range Descriptor Definition

Offset Field Name, ASL Field Name Definition
Byte 0 Memory range descriptor Value = 10000001B (Type = 1, Large item name =

0x1)
Byte 1 Length, bits[7:0] Value = 00001001B (9)
Byte 2 Length, bits[15:8] Value = 00000000B (0)
Byte 3 Information This field provides extra information about this

memory.

Bit[7:1] Ignored

Bit[0] Write status, _RW
Status
1 writeable
0 non-writeable (ROM)

Byte 4 Range minimum base address,
_MIN
bits[7:0]

Address bits[15:8] of the minimum base memory
address for which the card may be configured.

Byte 5 Range minimum base address,
_MIN
bits[15:8]

Address bits[23:16] of the minimum base memory
address for which the card may be configured

Byte 6 Range maximum base address,
_MAX,
bits[7:0]

Address bits[15:8] of the maximum base memory
address for which the card may be configured.

Byte 7 Range maximum base address,
_MAX,
bits[15:8]

Address bits[23:16] of the maximum base memory
address for which the card may be configured
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Offset Field Name, ASL Field Name Definition

Byte 8 Base alignment, _ALN,
bits[7:0]

This field contains the lower eight bits of the base
alignment.  The base alignment provides the
increment for the minimum base address. (0x0000 =
64 KByte)

Byte 9 Base alignment, _ALN,
bits[15:8]

This field contains the upper eight bits of the base
alignment. The base alignment provides the
increment for the minimum base address. (0x0000 =
64 KByte)

Byte 10 Range length, _LEN, bits[7:0]
This field contains the lower eight bits of the
memory range length. The range length provides the
length of the memory range in 256 byte blocks.

Byte 11 Range length, _LEN,
bits[15:8]

This field contains the upper eight bits of the
memory range length. The range length field
provides the length of the memory range in 256 byte
blocks.

NOTE:  Address bits [7:0] of memory base addresses are assumed to be 0.

NOTE:  A Memory range descriptor can be used to describe a fixed memory address by setting the range
minimum base address and the range maximum base address to the same value.

NOTE:  24-bit Memory Range descriptors are used for legacy devices.

NOTE: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

6.4.3.1.1 ASL Macro for 24-bit Memory Descriptor
The following macro generates a long 24 bit memory descriptor:

Memory24(
ReadWrite | ReadOnly, // _RW
WordConst, // _MIN, Minimum base memory address [23:8]
WordConst, // _MAX, Maximum base memory address [23:8]
WordConst, // _ALN, Base alignment
WordConst // _LEN, Range length
NameString | Nothing // A name to refer back to this resource
)

6.4.3.2 Vendor Defined (Type 1, Large Item Name 0x4)
The vendor defined resource data type is for vendor use.

Table 6-20   Large Vendor-Defined Resource Descriptor Definition

Offset Field Name Definition
Byte 0 Vendor defined Value = 10000100B (Type = 1, Large item name = 0x4)
Byte 1 Length, bits[7:0] Lower eight bits of vendor defined data length
Byte 2 Length, bits[15:8] Upper eight bits of vendor defined data length
N * bytes Vendor Defined Vendor defined data bytes

6.4.3.2.1 ASL Macro for Vendor Defined Descriptor
The following macro generates a long vendor specific descriptor:

VendorLong(
NameString | Nothing // A name to refer back to this resource
)
{
ByteConst [, ByteConst ...] // List of bytes
}
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6.4.3.3 32-Bit Memory Range Descriptor (Type 1, Large Item Name 0x5)
This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table 6-21   Large 32-Bit Memory Range Descriptor Definition

Offset Field Name Definition
Byte 0 Memory range descriptor Value = 10000101B (Type = 1, Large item name =

0x5)
Byte 1 Length, bits[7:0] Value = 00010001B (17)
Byte 2 Length, bits[15:8] Value = 00000000B (0)
Byte 3 Information This field provides extra information about this

memory.
Bit[7:1] Ignored

Bit[0] Write status, _RW
Status
1 writeable
0 non-writeable (ROM)

Byte 4 Range minimum base address,
_MIN
bits[7:0]

Address bits[7:0] of the minimum base memory
address for which the card may be configured.

Byte 5 Range minimum base address,
_MIN
bits[15:8]

Address bits[15:8] of the minimum base memory
address for which the card may be configured

Byte 6 Range minimum base address,
_MIN
bits[23:16]

Address bits[23:16] of the minimum base memory
address for which the card may be configured.

Byte 7 Range minimum base address,
_MIN
bits[31:24]

Address bits[31:24] of the minimum base memory
address for which the card may be configured

Byte 8 Range maximum base address,
_MAX
bits[7:0]

Address bits[7:0] of the maximum base memory
address for which the card may be configured.

Byte 9 Range maximum base address,
_MAX
bits[15:8]

Address bits[15:8] of the maximum base memory
address for which the card may be configured

Byte 10 Range maximum base address,
_MAX
bits[23:16]

Address bits[23:16] of the maximum base memory
address for which the card may be configured.

Byte 11 Range maximum base address,
_MAX
bits[31:24]

Address bits[31:24] of the maximum base memory
address for which the card may be configured

Byte 12 Base alignment, _ALN
bits[7:0]

This field contains Bits[7:0] of the base alignment.
The base alignment provides the increment for the
minimum base address.

Byte 13 Base alignment, _ALN
bits[15:8]

This field contains Bits[15:8] of the base
alignment.  The base alignment provides the
increment for the minimum base address.

Byte 14 Base alignment, _ALN
bits[23:16]

This field contains Bits[23:16] of the base
alignment. The base alignment provides the
increment for the minimum base address.

Byte 15 Base alignment, _ALN
bits[31:24]

This field contains Bits[31:24] of the base
alignment. The base alignment provides the
increment for the minimum base address.
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Offset Field Name Definition

Byte 16 Range length, _LEN
bits[7:0]

This field contains Bits[7:0] of the memory range
length. The range length provides the length of the
memory range in 1 byte blocks.

Byte 17 Range length, _LEN
bits[15:8]

This field contains Bits[15:8] of the memory range
length. The range length provides the length of the
memory range in 1 byte blocks.

Byte 18 Range length, _LEN
bits[23:16]

This field contains Bits[23:16] of the memory
range length. The range length provides the length
of the memory range in 1 byte blocks.

Byte 19 Range length, _LEN
bits[31:24]

This field contains Bits[31:24] of the memory
range length. The range length provides the length
of the memory range in 1 byte blocks.

NOTE: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

6.4.3.3.1 ASL Macro for 32-Bit Memory Descriptor
The following macro generates a long 32-bit memory descriptor:

Memory32(
ReadWrite | ReadOnly, // _RW
DWordConst, // _MIN, Minimum base memory address
DWordConst, // _MAX, Maximum base memory address
DWordConst, // _ALN, Base alignment
DWordConst // _LEN, Range length
NameString | Nothing // A name to refer back to this resource
)

6.4.3.4 32-Bit Fixed Location Memory Range Descriptor (Type 1, Large Item
Name 0x6)
This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table 6-22   Large Fixed-Location Memory Range Descriptor Definition

Offset Field Name Definition
Byte 0 Memory range descriptor Value = 10000110B (Type = 1, Large item name = 6)
Byte 1 Length, bits[7:0] Value = 00001001B (9)
Byte 2 Length, bits[15:8] Value = 00000000B (0)
Byte 3 Information This field provides extra information about this memory.

Bit[7:1] Ignored
Bit[0] Write status, _RW

Status
1 writeable
0 non-writeable (ROM)

Byte 4 Range base address, _BAS
bits[7:0]

Address bits[7:0] of the base memory address for which
the card may be configured.

Byte 5 Range base address, _BAS
bits[15:8]

Address bits[15:8] of the base memory address for which
the card may be configured

Byte 6 Range base address, _BAS
bits[23:16]

Address bits[23:16] of the base memory address for
which the card may be configured.

Byte 7 Range base address, _BAS
bits[31:24]

Address bits[31:24] of the base memory address for
which the card may be configured

Byte 8 Range length, _LEN
bits[7:0]

This field contains Bits[7:0] of the memory range length.
The range length provides the length of the memory
range in 1 byte blocks.
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Offset Field Name Definition

Byte 9 Range length, _LEN
bits[15:8]

This field contains Bits[15:8] of the memory range
length.  The range length provides the length of the
memory range in 1 byte blocks.

Byte 10 Range length, _LEN
bits[23:16]

This field contains Bits[23:16] of the memory range
length.  The range length provides the length of the
memory range in 1 byte blocks.

Byte 11 Range length, _LEN
bits[31:24]

This field contains Bits[31:24] of the memory range
length.  The range length provides the length of the
memory range in 1 byte blocks.

NOTE:  Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

6.4.3.4.1 ASL Macros for 32-bit Fixed Memory Descriptor
The following macro generates a long 32 bit fixed memory descriptor:

Memory32Fixed(
ReadWrite | ReadOnly, // _RW
DWordConst, // _BAS, Range base
DWordConst // _LEN, Range length
NameString | Nothing // A name to refer back to this resource
)

6.4.3.5 Address Space Descriptors
The DWORD and WORD Address Space Descriptors are general purpose structures for describing a variety of
types of resources. These resources also include support for advanced server architectures (such as multiple root
busses), and resource types found on some RISC processors.

6.4.3.5.1 DWORD Address Space Descriptor (Type 1, Large Item Name 0x7)
The DWORD address space descriptor is used to report resource usage in a 32-bit address space (like memory
and I/O).

Table 6-23   DWORD Address Space Descriptor Definition

Offset Field Name Definition
Byte 0 DWORD Address Space

Descriptor
Value=10000111B (Type = 1, Large item name = 0x7)

Byte 1 Length, bits[7:0] Variable: Value = 22 (minimum)
Byte 2 Length, bits[15:8] Variable: Value = 0 (minimum)
Byte 3 Resource Type Indicates which type of resource this descriptor

describes.  Defined values are:
0 Memory range
1 I/O range
2 Bus number range
3-255 Reserved
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Offset Field Name Definition
Byte 4 General Flags Flags that are common to all resource types:

Bits[7:4] Reserved, must be 0
Bit[3] _MAF:

1: The specified max address is fixed.
0: The specified max address is not fixed and
can be changed.

Bit[2] _MIF:
1: The specified min address is fixed.
0: The specified min address is not fixed and
can be changed.

Bit[1] _DEC:
1: This bridge subtractively decodes this

 address (top level bridges only)
0: This bridge positively decodes this address.

Bit[0] 
      1: This device consumes this resource.

0: This device produces and consumes this
      resource.

Byte 5 Type Specific Flags Flags that are specific to each resource type.  The
meaning of the flags in this field depends on the value
of the Resource Type field (see above)

Byte 6 Address space
granularity, _GRA
bits[7:0]

A set bit in this mask means that this bit is decoded.
All bits less significant than the most significant set bit
must all be set.  (i.e. The value of the full Address
Space Granularity field (all 32 bits) must be a number
(2n-1)

Byte 7 Address space
granularity, _GRA
bits[15:8]

Byte 8 Address space
granularity, _GRA
bits [23:16]

Byte 9 Address space
granularity, _GRA
bits [31:24]

Byte 10 Address range minimum,
_MIN
bits [7:0]

For bridges that translate addresses, this is the address
space on the primary side of the bridge.

Byte 11 Address range minimum,
_MIN
bits [15:8]

Byte 12 Address range minimum,
_MIN
bits [23:16]

Byte 13 Address range minimum,
_MIN
bits [31:24]

Byte 14 Address range
maximum, _MAX
bits [7:0]

For bridges that translate addresses, this is the address
space on the primary side of the bridge.

Byte 15 Address range
maximum, _MAX
bits [15:8]
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Offset Field Name Definition
Byte 16 Address range

maximum, _MAX
bits [23:16]

Byte 17 Address range
maximum, _MAX
bits [31:24]

Byte 18 Address Translation
offset, _TRA
bits [7:0]

For bridges that translate addresses across the bridge,
this is the offset that must be added to the address on
the primary side to obtain the address on the secondary
side. Non-bridge devices must list 0 for all Address
Translation offset bits.

Byte 19 Address Translation
offset, _TRA
bits [15:8]

Byte 20 Address Translation
offset, _TRA
bits [23:16]

Byte 21 Address Translation
offset, _TRA
bits [31:24]

Byte 22 Resource Source Index (Optional) Only present if Resource Source (below) is
present. This field gives an index to the specific
resource descriptor that this device consumes from in
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this
descriptor consumes its resources from the resources
produced by the named device object. If not present,
the device consumes its resources out of a global pool.
If not present, the device consumes this resource from
its hierarchical parent.

6.4.3.5.2 ASL Macros for DWORD Address Space Descriptor
The following macro generates a DWORD Address descriptor with ResourceType = Memory:

DWORDMemory(
ResourceConsumer | ResourceProducer | Nothing, // Nothing=>ResourceConsumer
SubDecode | PosDecode | Nothing, // _DEC, Nothing=>PosDecode
MinFixed | MinNotFixed | Nothing, // _MIF, Nothing=>MinNotFixed
MaxFixed | MaxNotFixed | Nothing, // _MAF, Nothing=>MaxNotFixed
Cacheable | WriteCombining | Prefetchable | NonCacheable | Nothing,

// _MEM, Nothing=>NonCacheable
ReadWrite | ReadOnly, // _RW, Nothing == ReadWrite
DWordConst, // _GRA, Address granularity
DWordConst, // _MIN, Address range minimum
DWordConst, // _MAX, Address range max
DWordConst, // _TRA, Translation
ByteConst | Nothing, // Resource Source Index;

// if Nothing, not generated
NameString | Nothing // Resource Source;

// if Nothing, not generated
NameString | Nothing // A name to refer back

// to this resource
)

The following generates a DWORD Address descriptor with ResourceType = IO:
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DWORDIO(
ResourceConsumer | ResourceProducer | Nothing, // Nothing == ResourceConsumer
MinFixed | MinNotFixed | Nothing, // _MIF, Nothing => MinNotFixed
MaxFixed | MaxNotFixed | Nothing, // _MAF, Nothing => MaxNotFixed
SubDecode | PosDecode | Nothing, // _DEC, Nothing => PosDecode
ISAOnlyRanges | NonISAOnlyRanges | EntireRange | Nothing,

// _RNG, Nothing => EntireRange
DWordConst, // _GRA: Address granularity
DWordConst, // _MIN: Address range minimum
DWordConst, // _MAX: Address range max
DWordConst, // _TRA: Translation
ByteConst | Nothing, // Resource Source Index;

// if Nothing, not generated
NameString | Nothing // Resource Source;

// if Nothing, not generated
NameString | Nothing // A name to refer back to this resource
)

6.4.3.5.3 WORD Address Space Descriptor (Type 1, Large Item Name 0x8)
The WORD address space descriptor is used to report resource usage in a 16-bit address space (like memory
and I/O). NOTE: This descriptor is exactly the same as the DWORD descriptor specified in Table 7-19; the only
difference is that the address fields are 16 bits wide rather than 32.

Table 6-24   WORD Address Space Descriptor Definition

Offset Field Name Definition
Byte 0 WORD Address Space

Descriptor
Value=10001000B (Type = 1, Large item name = 0x8)

Byte 1 Length, bits[7:0] Variable: Value = 13 (minimum)
Byte 2 Length, bits[15:8] Variable: Value = 0 (minimum)
Byte 3 Resource Type Indicates which type of resource this descriptor

describes.  Defined values are:
0 Memory range
1 I/O range
2 Bus number range
3-255 Reserved

Byte 4 General Flags Flags that are common to all resource types:
Bits[7:4] Reserved, must be 0
Bit[3] _MAF:

1: The specified max address is fixed.
0: The specified max address is not fixed and
can be changed.

Bit[2] _MIF:
1: The specified min address is fixed.
0: The specified min address is not fixed and
can be changed.

Bit[1] _DEC:
1: This bridge subtractively decodes this
address (top level bridges only)
0: This bridge positively decodes this address.

Bit[0] 1:  This device consumes this resource.
0:  This device produces and consumes this

                    resource.
Byte 5 Type Specific Flags Flags that are specific to each resource type.  The

meaning of the flags in this field depends on the value
of the Resource Type field (see above)
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Offset Field Name Definition
Byte 6 Address space

granularity, _GRA
bits[7:0]

A set bit in this mask means that this bit is decoded.
All bits less significant than the most significant set bit
must all be set.  (i.e. The value of the full Address
Space Granularity field (all 16 bits) must be a number
(2n-1)

Byte 7 Address space
granularity, _GRA
bits[15:8]

Byte 8 Address range minimum,
_MIN
bits [7:0]

For bridges that translate addresses, this is the address
space on the primary side of the bridge.

Byte 9 Address range minimum,
_MIN
bits [15:8]

Byte 10 Address range
maximum, _MAX
bits [7:0]

For bridges that translate addresses, this is the address
space on the primary side of the bridge.

Byte 11 Address range
maximum, _MAX
bits [15:8]

Byte 12 Address Translation
offset, _TRA
bits [7:0]

For bridges that translate addresses across the bridge,
this is the offset that must be added to the address on
the primary side to obtain the address on the secondary
side. Non-bridge devices must list 0 for all Address
Translation offset bits.

Byte 13 Address Translation
offset, _TRA
bits [15:8]

Byte 14 Resource Source Index (Optional) Only present if Resource Source (below) is
present.  This field gives an index to the specific
resource descriptor that this device consumes from in
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this
descriptor consumes its resources from the resources
produced by the named device object. If not present,
the device consumes its resources out of a global pool.
If not present, the device consumes this resource from
its hierarchical parent.

6.4.3.5.4 ASL Macros for WORD Address Descriptor
The following macro generates a WORD Address descriptor with ResourceType = IO
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WORDIO(
ResourceConsumer | ResourceProducer | Nothing, // Nothing=>ResourceConsumer
MinFixed | MinNotFixed | Nothing, // _MIF, Nothing=>MinNotFixed
MaxFixed | MaxNotFixed | Nothing, // _MAF, Nothing=>MaxNotFixed
SubDecode | PosDecode | Nothing, // _DEC, Nothing=>PosDecode
ISAOnlyRanges | NonISAOnlyRanges | EntireRange, // _RNG
WordConst, // _GRA: Address granularity
WordConst, // _MIN: Address range minimum
WordConst, // _MAX: Address range max
WordConst, // _TRA: Translation
ByteConst | Nothing, // Resource Source Index;

// if Nothing, not generated
NameString | Nothing // Resource Source;

// if Nothing, not generated
NameString | Nothing // A name to refer back

// to this resource
)

The following macros generates a WORD Address descriptor with ResourceType = BusNumber:

WORDBusNumber(
ResourceConsumer | ResourceProducer | Nothing, // Nothing=>ResourceConsumer
MinFixed | MinNotFixed | Nothing, // _MIF, Nothing=>MinNotFixed
MaxFixed | MaxNotFixed | Nothing, // _MAF, Nothing=>MaxNotFixed
SubDecode | PosDecode | Nothing, // _DEC, Nothing=>PosDecode
WordConst, // _GRA, Address granularity
WordConst, // _MIN, Address range minimum
WordConst, // _MAX, Address range max
WordConst, // _TRA: Translation
ByteConst | Nothing, // Resource Source Index;

// if Nothing, not generated
NameString | Nothing // Resource Source;

// if Nothing, not generated
NameString | Nothing // A name to refer back

// to this resource
)

6.4.3.5.5 Resource Type Specific Flags
The meaning of the flags in the Type Specific Flags field of the Address Space Descriptors depends on the value
of the Resource Type field in the descriptor.  The flags for each resource type are defined in the following
tables:

Table 6-25   Memory Resource Flag (Resource Type = 0) Definitions

Bits Meaning
Bits[7:4] Reserved; must be 0
Bits[4:1] Memory attributes, _MEM

Value Meaning
0 The memory is noncacheable
1 The memory is cacheable
2 The memory is cacheable and supports write combining
3 The memory is cacheable and prefetchable
>3 Reserved

Bit[0] Write status, _RW
1: This memory range is read-write
0: This memory range is read-only

Table 6-26   I/O Resource Flag (Resource Type = 1) Definitions

Bits Meaning
Bit[7:2] Reserved; must be 0
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Bits Meaning
Bit[1] _RNG

This flag is for bridges on systems with multiple bridges.  Setting this bit means
the memory window specified in this descriptor is limited to the ISA I/O addresses
that fall within the specified window.  The ISA I/O ranges are: n000-n0FF, n400-
n4FF, n800-n8FF, nC00-nCFF. This bit can only be set for bridges entirely
configured through ACPI name space.

Bit[0] _RNG
This flag is for bridges on systems with multiple bridges.  Setting this bit means
the memory window specified in this descriptor is limited to the non ISA I/O
addresses that fall within the specified window.  The non-ISA I/O ranges are:
n100-n3FF, n500-n7FF, n900-nBFF, nD00-nFFF. This bit can only be set for
bridges entirely configured through ACPI names pace.

Table 6-27   Bus Number Range Resource Flag (Resource Type = 2) Definitions

Bits Meaning
Bit[7:0] Reserved; must be 0

6.4.3.6 Extended Interrupt Descriptor (Type 1, Large Item Name 0x9)
The Extended Interrupt Descriptor is necessary to describe interrupt settings and possibilities for systems that
support interrupts above 15.

To specify multiple interrupt numbers, this descriptor allows vendors to list an array of possible interrupt
numbers, any one of which can be used.

Table 6-28   Extended Interrupt Descriptor Definition

Offset Field Name Definition
Byte 0 Extended Interrupt

Descriptor
Value=10001001B (Type = 1, Large item name =
0x9)

Byte 1 Length, bits[7:0] Variable: Value = 12 (minimum)
Byte 2 Length, bits[15:8] Variable: Value = 0 (minimum)
Byte 3 Interrupt Vector Flags Interrupt Vector Information.

Bit[7:4]   Reserved, must be 0.
Bit[3]        Interrupt is shareable, _SHR
Bit[2]        Low true level sensitive, _LL

Bit[1]        High true level sensitive, _HE
Bit[0] 1: This device consumes this resource
                  0: This device produces and consumes
                        this resource

Byte 4 Interrupt table length Indicates the number of interrupt numbers that follow.
When this descriptor is returned from _CRS, or when
the OS passes this descriptor to _SRS, this field must
be set to 1.

Byte 4n+5 Interrupt Number, _INT
bits [7:0]

Interrupt number.

Byte 4n+6 Interrupt Number, _INT
bits [15:8]

Byte 4n+7 Interrupt Number, _INT
bits [23:16]

Byte 4n+8 Interrupt Number, _INT
bits [31:24]

… … Additional interrupt numbers
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Offset Field Name Definition
Byte x Resource Source Index (Optional) Only present if Resource Source (below) is

present.  This field gives an index to the specific
resource descriptor that this device consumes from in
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional)  If present, the device that uses this
descriptor consumes its resources from the resources
produces by the named device object. If not present,
the device consumes its resources out of a global pool.
If not present, the device consumes this resource from
its hierarchical parent.

NOTE:  Low true, level sensitive interrupts may be electrically shared, the process of how this might work is
beyond the scope of this specification.

If the operating system is running using the 8259 interrupt model, only interrupt number values of 0-15 will be
used, and interrupt numbers greater than 15 will be ignored.

6.4.3.6.1 ASL Macro for Extended Interrupt Descriptor
The following macro generates an extended interrupt descriptor:

Interrupt(
ResourceConsumer | ResourceProducer | Nothing, // Nothing=>ResourceConsumer
Edge | Level, // _LL, _HE
ActiveHigh | ActiveLow , // __LL, _HE
Shared | Exclusive | Nothing, // _SHR: Nothing=>Exclusive
ByteConst | Nothing, // Resource Source Index;

// if Nothing, not generated
NameString | Nothing // Resource Source;

// if Nothing, not generated
NameString | Nothing // A name to refer back

// to this resource
)
{
DWordConst [, DWordConst ...] // _INT, list of interrupt numbers
}
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7. Power Management
This section specifies the device power management objects and system power management objects the OS can
use to perform power management on a platform. The system state indicator objects are also specified in this
section.

7.1 Declaring a PowerResource Object
An ASL PowerResource statement is used to declare a PowerResource object. A Power Resource object refers
to a software-controllable power plane, clock plane, or other resource upon which an integrated ACPI power-
managed device might rely. Power resource objects can appear wherever is convenient in name space.
The syntax of a PowerResource statement is:

PowerResource(resourcename, systemlevel, resourceorder ) {NamedList}

where the systemlevel parameter is a number and the resourceorder parameter is a numeric constant (a Word).
For a formal definition of the PowerResource statement syntax, see section 15.

Systemlevel is the lowest power system sleep level the OS must maintain to keep this power resource on (0
equates to S0, 1 equates to S1, and so on) .

Each power-managed ACPI device lists the resources it requires for its supported power levels. The OS
multiplexes this information from all devices and then enables and disables the required Power Resources
accordingly. The resourceorderl field in the Power Resource object is a unique value per Power Resource, and
it provides the system with the order in which Power Resources must be enabled or disabled. Power Resources
are enabled from low values to high values and are disabled from high values to low values. The operating
software enables or disables all affected Power Resources in any one resourceorder level at a time before
moving on to the next ordered level. Putting Power Resources in different order levels provides power
sequencing and serialization where required.

A Power Resource can have named objects under its Name Space location. For a description of the ACPI-
defined named objects for a Power Resource, see section 7.2.

The following block of ASL sample code shows a use of PowerResource.

PowerResource(PIDE, 0, 0) {
Method(_STA) {

Return (Xor (GIO.IDEI, One, Zero)) // inverse of isolation
}
Method(_ON) {

Store (One, GIO.IDEP) // assert power
Sleep (10) // wait 10ms
Store (One, GIO.IDER) // de-assert reset#
Stall (10) // wait 10us
Store (Zero, GIO.IDEI) // de-assert isolation

}
Method(_OFF) {

Store (One, GIO.IDEI) // assert isolation
Store (Zero, GIO.IDER) // assert reset#
Store (Zero, GIO.IDEP) // de-assert power

}
}

7.2 Device Power Management Objects
For a device that is power-managed using ACPI, a Definition Block contains one or more of the objects found in
the table below. Power management of a device is done using two different paradigms:
• Power Resource control.
• Device-specific control.

Power Resources are resources that could be shared amongst multiple devices. The operating software will
automatically handle control of these devices by determining which particular Power Resources need to be in the
ON state at any given time. This determination is made by considering the state of all devices connected to a
Power Resource.
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For many devices the Power Resource control is all that is required; however, .device objects may include their
own device-specific control method.

These two types of power management controls (through Power Resources and through specific devices) can be
applied in combination or individually as required.

Table 7-1   Device Power Management Child Objects

Object Description
_IRC Object that signifies the device has a significant inrush current draw.
_PRW Object that evaluates to the device’s power requirements in order to wake  the system from a

system sleeping state.
_PR0 Object that evaluates to the device’s power requirements in the D0 device state (device fully

on).
_PR1 Object that evaluates to the device’s power requirements in the D1 device state. The only

devices that supply this level are those which can achieve the defined D1 device state
according to the related device class.

_PR2 Object that evaluates to the device’s power requirements in the D2 device state. The only
devices that supply this level are those which can achieve the defined D2 device state
according to the related device class.

_PSC Object that evaluates to the device’s current power state.
_PSW Control method that enables or disables the device’s WAKE function.
_PS0 Control method that puts the device in the D0 device state (device fully on).
_PS1 Control method that puts the device in the D1 device state.
_PS2 Control method that puts the device in the D2 device state.
_PS3 Control method that puts the device in the D3 device state (device off).

7.2.1 _PRW
This object is only required for devices that have the ability to “wake” the system from a system sleeping state.
This object evaluates to a package of the following definition:

Table 7-2  Wake Power Requirements Package

Object Description
0 numeric The bit index in GPEx_EN of the enable bit that is enabled for

the wake event.
1 numeric The lowest power system sleeping state that can be entered

while still providing wake functionality.
2 object reference Reference to required Power Resource #0.

…
N object reference Reference to required Power Resource #N.

For the OS to have the defined wake capability properly enabled for the device, the following must occur:
1. All Power Resources referenced by elements 2 through N are put into the ON state.
2. If present, the _PSW control method is executed to set the device-specific registers to enable the wake

functionality of the device.

Then, if the system wants to enter a sleeping state:
1. Interrupts are disabled.
2. The sleeping state being entered must be greater or equal to the power state declared in element 1 of the

_PRW object.
3. The proper general-purpose register bits are enabled.

7.2.2 _PR0
This object evaluates to a package of the following definition:
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Table 7-3  Power Resource Requirements Package

Object Description
0 numeric The lowest power system sleeping  state in which the device can

still maintain this power state.
1 object reference Reference to required Power Resource #0.

…
N object reference Reference to required Power Resource #N.

For the OS to put the device in the D0 device state, the following must occur:
1. The OS determines the lowest power system state the system must maintain to power the device in the D0

state.
2. All Power Resources referenced by elements 1 through N must be in the ON state.
3. All Power Resources  no longer referenced by any device in the system must be in the OFF state.
4. If present, the _PS0 control method is executed to set the device into the D0 device state.

7.2.3 _PR1
This object evaluates to a package as defined in Table 7-3. For the OS to put the device in the D1 device state,
the following must occur:
1. The OS determines the lowest power system state the system must maintain to power the device in the D1

state.
2. All Power Resources referenced by elements 1 through N must be in the ON state.
3. All Power Resources no longer referenced by any device in the system must be in the OFF state.
4. If present, the _PS1 control method is executed to set the device into the D1 device state.

7.2.4 _PR2
This object evaluates to a package as defined in Table 7-3. For the OS to put the device in the D2 device state,
the following must occur:
1. The OS determines the lowest power system state the system must maintain to power the device in the D2

state.
2. All Power Resources referenced by elements 1 through N must be in the ON state.
3. All Power Resources no longer referenced by any device in the system must be in the OFF state.
4. If present, the _PS2 control method is executed to set the device into the D2 device state.

7.3 Power Resources for OFF
By definition, a device that is OFF does not have any power resource or system power state requirements.
Therefore, device objects do not list power resources for the OFF power state.

For the OS to put the device in the D3 state, the following must occur:
1. All Power Resources no longer referenced by any device in the system must be in the OFF state.
2. If present, the _PS3 control method is executed to set the device into the D3 device state.

The only transition allowed from the D3 device state is to the D0 device state.

7.3.1 _IRC
The presence of this object signifies that transitioning the device to its D0 state causes a system-significant in-
rush current load. In general, such operations need to be serialized such that multiple operations are not
attempted concurrently. Within ACPI, this type of serialization can be accomplished with the resourceorder
parameter of the device’s Power Resources; however, this does not serialize ACPI-controlled devices with non-
ACPI controlled devices. IRC is used to signify this fact outside of the ACPI driver to the OS such that the OS
can serialize all devices in the system that have in-rush current serialization requirements. The OS can only
transition one device flagged with _IRC to the D0 state at a time.
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7.3.2 _PSW
In addition to _PSR, this control method can be used to enable or disable the device’s ability to wake a sleeping
system. This control method can only access Operation Regions that are either always available while in a
system working state or that are available when the Power Resources references by the _PRW object are all ON.
For example, do not put a power plane control for a bus controller within configuration space located behind the
bus.

Arguments:
0: Enable / Disable. 0 to disable the device’s wake capabilities.

1 to enable the device’s wake capabilities.
Result code:

None

7.3.3 _PSC
This control method evaluates to the current device state. This control method is not required if the device state
can be inferred by the Power Resource settings. This would be the case when the device does not require a
_PS0, _PS1, _PS2, or _PS3 control method.

Arguments:
None

Result code:
The result codes are shown in Table 7-4.

Table 7-4  _PSC Control Method Result Codes

Result Device State
0 D0
1 D1
2 D2
3 D3

7.3.4 _PS0
This Control Method is used to put the specific device into its D0 state. This Control Method can only access
Operation Regions that are either always available while in a system working state or that are available when the
Power Resources references by the _PR0 object are all ON.

Arguments:
None

Result code:
None

7.3.5 _PS1
This control method is used to put the specific device into its D1 state. This control method can only access
Operation Regions that are either always available while in a system working state or that are available when the
Power Resources references by the _PR1 object are all ON.

Arguments:
None

Result code:
None

7.3.6 _PS2
This control method is used to put the specific device into its D2 state. This control method can only access
Operation Regions that are either always available while in a system working state or that are available when the
Power Resources references by the _PR2 object are all ON.
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Arguments:
None

Result code:
None

7.3.7 _PS3
This control method is used to put the specific device into its D3 state. This control method can only access
Operation Regions that are always available while in a system working state.

A device in the D3 state must no longer be using its resources (for example, its memory space and IO ports are
available to other devices).

Arguments:
None

Result code:
None

7.4 Defined Child Objects for a Power Resource
Each power resource object is required to have the following control methods to allow basic control of each
power resource.    As the OS changes the state of device objects in the system, the power resources which are
needed will change which will cause the ACPI driver to turn power resources on and off.   To determine the
initial power resource settings the _STA method can be used.

Table 7-5   Power Resource Child Objects

Object Description
_STA Object that evaluates to the current on or off state of the Power Resource.

0 = OFF, 1 = ON
_ON Set the resource on.
_OFF Set the resource off.

7.4.1 _STA

Returns the current ON or OFF status for the power resource.

Arguments:
None

Result code:
0 indicates the power resource is currently off
1 indicates the power resource is currently on

7.4.2 _ON

This power resource control method puts the power resource into the ON state. The control method does not
complete until the power resource is on.  The ACPI driver only turns on or off one resource at a time, so the
AML code can obtain the proper timing sequencing by using Stall or Sleep within the ON (or OFF) method to
cause the proper sequencing delays between operations on power resources.

Arguments:
None

Result code:
None

7.4.3 _OFF

This power resource control method puts the power resource into the OFF state.  The control method does not
complete until the power resource is off.   The ACPI driver only turns on or off one resource at a time, so the
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AML code can obtain the proper timing sequencing by using Stall or Sleep within the ON (or off) method to
cause the proper sequencing delays between operations on power resources.

Arguments:
None

Result code:
None

7.5 OEM-Supplied System Level Control Methods
An OEM-supplied Definition Block provides some number of controls appropriate for system level
management. These are used by the OS to integrate to the OEM-provided features. The following table lists the
defined OEM system controls that can be provided.

Table 7-6   BIOS-Supplied Control Methods for System Level Functions

Object Description
\_PTS Control method used to prepare to sleep
\_S0 Package that defines system \_S0 state mode.
\_S1 Package that defines system \_S1 state mode.
\_S2 Package that defines system \_S2 state mode.
\_S3 Package that defines system \_S3 state mode.
\_S4 Package that defines system \_S4 state mode.
\_S5 Package that defines system \_S5 state mode.
\_WAK Control method run once awakened.

7.5.1 \_PTS Prepare To Sleep
The _PTS control method is executed by the operating system at the beginning of the sleep process for S1, S2,
S3, S4, and for orderly S5 shutdown. The sleeping state value (1, 2, 3, 4, or 5) is passed to the _PTS control
method. Before the OS notifies native device drivers and prepares the system software for a system sleeping
state, it executes this ACPI control method. Thus, this control method can be executed a relatively long time
before actually entering the desired sleeping state. In addition, the OS can abort the sleeping operation without
notification to the ACPI driver, in which case another _PTS would occur some time before the next attempt by
the OS to enter a sleeping state.
The _PTS control method cannot modify the current configuration or power state of any device in the system.
For example, _PTS would simply store the sleep type in the embedded controller in sequencing the system into a
sleep state when the SLP_EN bit is set.

Arguments:
0: The value of the sleeping state (1 for S1, 2 for S2, and so on).

7.5.2 System \_Sx states
All system states supported by the system must provide an object containing the Dword value of the following
format in the static Definition Block. The system states, known as S0 - S5, are referenced in the name space as
\_S0 - \_S5 and for clarity the short Sx names are used unless specifically referring to the named \_Sx object.
For each Sx state, there is a defined system behavior.

Table 7-7   System State Package

Byte
Length

Byte
Offset

Description

1 0 Value for PM1a_CNT.SLP_TYP register to enter this system state.
1 1 Value for PM1b_CNT.SLP_TYP register to enter this system state. To enter any

given state, the OS must write the PM1a_CNT.SLP_TYP register before the
PM1b_CNT.SLP_TYP register.

2 2 Reserved
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States S1-S4 represent some system sleeping state. The S0 state is the system working state.  Transition into the
S0 state from some other system state (such as sleeping) is automatic, and, by virtue that instructions are being
executed, the OS assumes the system to be in the S0 state. Transition into any system sleeping state is only
accomplished by the operating software directing the hardware to enter the appropriate state, and the operating
software can only do this within the requirements defined in the Power Resource and Bus / Device Package
objects.

All runtime system state transitions (for example, to and from the S0 state), except S4 and S5, are done similarly
such that the code sequence to do this is the following:
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/*
Intel Architecture SetSleepingState example

*/

ULONG
SetSystemSleeping (

IN ULONG NewState
)
{
PROCESSOR_CONTEXT Context;
ULONG PowerSeqeunce;
BOOLEAN FlushCaches;
USHORT SlpTyp;

// Required environment: Executing on the system boot
// processor. All other processors stopped.  Interrupts
// disabled.  All  Power Resources (and devices) are in
// corresponding device state to support NewState.

// Get h/w attributes for this system state
FlushCaches = SleepType[NewState].FlushCache;
SlpTyp = SleepType[NewState].SlpTyp & SLP_TYP_MASK;

_asm {
lea eax, OsResumeContext
push eax ; Build real mode handler the resume
push offset sp50 ; context, with eip = sp50
call SaveProcessorState

mov eax, ResumeVector ; set firmware’s resume vector
mov [eax], offset OsRealModeResumeCode

mov edx, PM1a_STS ;Make sure wake status is clear
mov ax, WAK_STS ; (cleared by asserting the bit
out dx, ax ; in the status register)

mov edx, PM1b_STS ;
out dx, ax ;

and eax, not SLP_TYP_MASK
or eax, SlpTyp ; set SLP_TYP
or ax, SLP_EN ; set SLP_EN

cmp FlushCaches, 0
jz short sp10 ; If needed, ensure no dirty data in

call FlushProcessorCaches ; the caches while sleeping

sp10: mov edx, PM1a_SLP_TYP ; get address for PM1a_SLP_TYP
out dx, ax ; start h/w sequencing
mov edx, PM1b_SLP_TYP ; get address for PM1b_SLP_TYP
out dx, ax ; start h/w sequencing

mov edx, PM1a_STS ; get address for PM1x_STS
mov ecx, PM1b_STS

sp20: in ax, dx ; wait for WAK status
xchg edx, ecx
test ax, WAK_STS
jz short sp20

sp50:
}

// Done..
*ResumeVector = NULL;
return 0;
}

7.5.2.1 System \_S0 State (Working)
While the system is in the S0 state, it is in the system working state. The behavior of this state is defined as:
• The processors are in the C0, C1, C2, or C3 states. The processor complex context is maintained and

instructions are executed as defined by any of these processor states.
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• Dynamic RAM context is maintained and is read/write by the processors.
• Devices states are individually managed by the operating software and can be in any device state (D0, D1,

D2, or D3).
• Power Resources are in a state compatible with the current device states.

Transition into the S0 state from some system sleeping state is automatic, and by virtue that instructions are
being executed the OS assumes the system to be in the S0 state.

7.5.2.2 System \_S1 State (Sleeping with Processor Context Maintained)
While the system is in the S1 sleeping state, its behavior is the following:
• The processors are not executing instructions. The processor complex context is maintained.
• Dynamic RAM context is maintained.
• Power Resources are in a state compatible with the system S1 state. All Power Resources that supply a

System Level reference of S0 are in the OFF state.
• Devices states are compatible with the current Power Resource states. only devices which solely reference

Power Resources which are in the ON state for a given device state can be in that device state. In all other
cases, the device is in the D3 (off) state10.

• Devices that are enabled to wake the system and that can do so from their current device state can initiate a
hardware event which transitions the system state to S0. This transition causes the processor to continue
execution where it left off.  

To transition into the S1 state, the operating software does not have to flush the processor’s cache.

7.5.2.3 System \_S2 State
The S2 sleeping state is logically lower then the S1 state and is assumed to conserve more power. The behavior
of this state is defined as:
• The processors are not executing instructions. The processor complex context is not maintained.
• Dynamic RAM context is maintained.
• Power Resources are in a state compatible with the system S2 state. All Power Resources that supply a

System Level reference of S0 or S1 are in the OFF state.
• Devices states are compatible with the current Power Resource states. only devices which solely reference

Power Resources which are in the ON state for a given device state can be in that device state. In all other
cases, the device is in the D3 (off) state.

• Devices that are enabled to wake the system and that can do so from their current device state can initiate a
hardware event which transitions the system state to S0. This transition causes the processor to begin
execution at its boot location. The BIOS performs initialization of core functions as needed to exit an S2
state and passes control to the firmware resume vector. See section 9.3.2 for more details on BIOS
initialization.

Because the processor context can be lost while in the S2 state, the transition to the S2 state requires that the
operating software flush all dirty cache to DRAM.

7.5.2.4 System \_S3 State
The S3 state is logically lower then the S2 state and is assumed to conserve more power. The behavior of this
state is defined as follows:
• The processors are not executing instructions. The processor complex context is not maintained.
• Dynamic RAM context is maintained.
• Power Resources are in a state compatible with the system S3 state. All Power Resources that supply a

System Level reference of S0, S1, or S2 are in the OFF state.

                                                          
10 Or is at least assumed to be in the D3 state by its device driver. For example, if the device doesn’t explicitly
describe how it can stay in some state non-off state while the system is in a sleeping state, the operating software
must assume that the device can lose its power and state.
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• Devices states are compatible with the current Power Resource states. only devices which solely reference
Power Resources which are in the ON state for a given device state can be in that device state.  In all other
cases, the device is in the D3 (off) state.

• Devices that are enabled to wake the system and that can do so from their current device state can initiate a
hardware event which transitions the system state to S0. This transition causes the processor to begin
execution at its boot location. The BIOS performs initialization of core functions as required to exit an S3
state and passes control to the firmware resume vector. See section 9.3.2 for more details on BIOS
initialization.

From the software view point, this state is functionally the same as the S2 state. The operational difference can
be that some Power Resources that could be left ON to be in the S2 state might not be available to the S3 state.
As such, additional devices can be required to be in logically lower D0, D1, D2, or D3 state for S3 than S2.
Similarly, some device wake events can  function in S2 but not S3.

Because the processor context can be lost while in the S3 state, the transition to the S3 state requires that the
operating software flush all dirty cache to DRAM.

7.5.2.5 System \_S4 State
While the system is in this state, it is in the system S4 sleeping state. The state is logically lower then the S3
state and is assumed to conserved more power. The behavior of this state is defined as follows:
• The processors are not executing instructions. The processor complex context is not  maintained.
• Dynamic RAM context is not maintained.
• Power Resources are in a state compatible with the system S4 state. All Power Resources that supply a

System Level reference of S0, S1, S2, or S3 are in the OFF state.
• Devices states are compatible with the current Power Resource states. In other words, all devices are in the

D3 state when the system state is S4.
• Devices that are enabled to wake the system and that can do so from their D4 device state can initiate a

hardware event which transitions the system state to S0. This transition causes the processor to begin
execution at its boot location.

After the OS has executed the _PTS control method and put the entire system state into main memory, there are
two ways which the OS may handle the next phase of the S4 state for saving and restoring main memory. The
first way is where the operating system uses its drivers to access the disks and file system structures to save a
copy of memory to disk, and then initiates the hardware S4 sequence by setting the SLP_EN register bit.   When
the system wakes, the firmware performs a normal boot process and loads the OSes loader.  The loader then
restores the systems memory and wakes the OS.
The alternate method for entering the S4 state is to utilize the BIOS via the S4BIOS transition.  The BIOS uses
firmware to save a copy of  memory to disk and then initiates the hardware S4 sequence.  When the system
wakes, the firmware restores memory from disk and wakes the OS by transferring control to the FACS waking
vector.
The S4BIOS transition is optional, but any system which supports this mechanism is required to support
entering the S4 state via the direct OS mechanism.  Thus the preferred mechanism for S4 support is the direct
OS mechanism as it provides broader platform support.  The alternate S4BIOS transition provides a way to
achieve S4 support on OSes which do not have support for the direct method.

7.5.2.6 System \_S5 State (Soft Off)

The S5 state is similar to the S4 state except that the OS has not saved any context nor set any devices to wake
the system. The system is in the “soft” off state and requires a complete boot when awakened (BIOS and OS).
Software uses a different state value to distinguish between this state and the S4 state to allow for initial boot
operations within the BIOS to distinguish whether or not the boot is going to wake from a saved memory image.
The OS must have all wake events disabled before initiating SLP_EN for the S5 state.

7.5.3 \_WAK  (System Wake)
After the system has awakened from a sleeping state, it will invoke the \_WAK method and pass the sleeping
state value that has ended. This operation occurs asynchronously with other driver notifications in the system



Power Management 7-143

Intel/Microsoft/Toshiba

and is not the first action to be taken when the system wakes up. The AML code for this control method issues
device, thermal, and other notifications to ensure that the OS checks the state of devices, thermal zones, and so
on that could not be maintained during the system sleeping state.  For example, if the system cannot determine
whether a device was inserted or removed from a bus while in the S2 state, the _WAK method would issue a
devicecheck type of notification for that bus when issued with the sleeping state value of 2 (for more information
about types of notifications, see section 5.6.3). Note that a device check notification from the \_SB node will
cause the OS to re-enumerate the entire tree11.

Hardware is not obligated to track the state needed to supply the resulting status; however, this method can
return status concerning the last sleep operation initiated by the OS. The result codes can be used to provide
additional information to the OS or user.

Arguments:
0 The value of the sleeping state (1 for S1, 2 for S2, and so on).

Result code (2 Dword package):
Status Bit field of defined conditions that occurred during sleep.

0x00000001 Wake was signaled but failed due to lack of power.
0x00000002 Wake was signaled but failed due to thermal condition.
Other Reserved.

PSS If non-zero, the effective S-state the power supply really entered.
This value is used to detect when the targeted S-state was not entered because of too much current being
drawn from the power supply. For example, this might occur when some active device’s current
consumption pushes the system’s power requirements over the low power supply mark, thus preventing the
lower power mode to be entered as desired.

                                                          
11 Only buses that support hardware-defined enumeration methods are done automatically at run time. This
would include ACPI enumerated devices.



Intel/Microsoft/Toshiba

8. Processor Control
This section describes the OS runtime aspects of managing the processor’s power consumption and other
controls while the system is in the working state12. The major controls over the processors are:
• Processor power states: C0, C1, C2, C3
• Processor clock throttling
• Cooling control

These controls are used in combination by the operating software to achieve the desired balance of the
following, sometimes paradoxical, goals:
• Performance
• Power consumption and battery life
• Thermal requirements
• Noise level requirements

Because the goals interact with each other, the operating software needs to implement a policy as to when
and where tradeoffs between the goals are to be made13. For example, the operating software would
determine when the audible noise of the fan is undesirable and would trade off that requirement for lower
thermal requirements, which can lead to lower processing performance. Each processor control is discussed
in the following sections along with how the control interacts with the various goals.

8.1 Declaring a Processor Object

A processor object is declared for each processor in the system using an ASL Processor statement. A
processor object provides processor configuration information and points to the P_BLK. For more
information, see section 15.

8.2 Processor Power States
By putting a processor into a power state (C1, C2, or C3), the processor consumes less power and dissipates
less heat than leaving the processor in the C0 state. While in a sleeping state, the processor does not execute
any instructions. Each sleeping state has a latency associated with entering and exiting that corresponds to
the power savings. To conserve power, the operating software puts the processor into one of its supported
sleeping states when idle.

8.2.1 Processor Power State C0
While the processor is in this state, it executes instructions. No specific power or thermal savings are
realized.

8.2.2 Processor Power State C1
All processors support this power state. This processor power state has the lowest latency, and on IA-PC
processors is entered by the “STI-HLT” instruction sequence14.  The hardware latency on this state is
required to be low enough that the operating software does not consider the latency aspect of the state when
deciding whether to use it . Aside from putting the processor in a power state, this state has no other
software-visible effects.

The hardware can exit this state for any reason, but must always exit this state whenever an interrupt is to be
presented to the processor.

                                                          
12 In any system sleeping state, the processors are not executing instructions (that is, not “runtime”), and the
power consumption is fixed as a property of that system state.
13 A thermal warning leaves room for operating system tradeoffs to occur (to start the fan or to reduce
performance), but a critical thermal alert does not occur.
14 The C1 sleeping state specifically defines interrupts to be enabled while halted.
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8.2.3 Processor Power State C2
This processor power state is optionally supported by the system. If present, the state offers improved
power savings of the C1 state and is entered by using the P_LVL2 command register for the local processor.
The worst-case hardware latency for this state is declared in the FACP Table and the operating software can
use this information to determine when the C1 state should be used instead of the C2 state. Aside from
putting the processor in a power state, this state has no other software-visible effects.

The hardware can exit this state for any reason, but must always exit this state whenever an interrupt is to be
presented to the processor.

8.2.4 Processor Power State C3
This processor power state is optionally supported by the system. If present, the state offers improved
power savings of the C1 and C2 state and is entered by using the P_LVL3 command register for the local
processor. The worst-case hardware latency for this state is declared in the FACP Table, and the operating
software can use this information to determine when the C2 state should be used instead of the C3 state.
While in the C3 state, the processor’s caches maintain state but ignore any snoops. The operating software
is responsible for ensuring that the caches maintain coherency.  In a uniprocessor environment, this can be
done by using the PM2_CNT.ARB_DIS bus master arbitration disable register to ensure bus master cycles
do not occur while in the C3 state. In a multiprocessor environment, the processors’ caches can be flushed
and invalidated such that no dynamic information remains in the caches before entering the C3 state.

The hardware can exit this state for any reason, but must always exit this state whenever an interrupt is to be
presented to the processor or when BM_RLD is set and a bus master is attempting to gain access to
memory.

8.3 Processor State Policy
The operating software can implement control policies based on what is best suited for it. Below is an
example policy for IA-PC processors.

; ProcessorIdleHandlers is initialized at system initialization time.
; It contains the handler to use for each of the C1, C2, C3 processor
; states.  If the given processor state is not supported, the next
; best handler is installed.
ProcessorIdleHanders dd 4 dup (?)

ProcessorIdle:
; System determines that processor is idle, and has interrupts
; disabled as that idleness can only be maintained until the next
; interrupt

call [IdleHandler] ; Invoke currently selected idle handler

; IdleHandler enabled interrupts
jmp TopOfIdleCode ; Go check to see if we are still idle

Example idle handers are shown below. The strategy shown is for each idle handler to quickly determine
that the installed IdleHandler should be demoted to the next lower level. Not shown is an operating
environment-specific task of very low priority that waits for the processor’s “idleness” to get sufficiently
high for a long amount of time, at which point it promotes the IdleHandler to its next higher level.
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IdleC1:
sti
hlt
ret

IdleC2:
mov eax,LastIdleStart] ; (eax) = last idle start time
sub eax,[LastIdleEnd] ; (eax) = length of last idle
and eax,0ffffffh ; mask off sign
cmp eax,RequiredC2IdleTime ; was last idle long enough?
jc short IdleC2Short ; no, go check for demotion

mov edx, PM_TMR
in eax, dx ; Get current time
mov [LastIdleStart], eax ; This is new LastIdleStart

mov edx, P_LVL2
in al, dx ; Enter C2

mov edx, PM_TMR
in eax, dx ;  Ensure C2 entered
in eax, dx ; Get current time
mov [LastIdleEnd], eax ; This is new LastIdleEnd

sti
ret

A demotion policy from C2 could be to demote to C1 after two short C2 idles in a row.

IdleC3Uniprocessor:
mov edx, PM1a_STS
in al, dx
mov edx, PM1b_STS
mov ah, al
in al, dx
or ah, al
test ah, BM_STS ; Any bus master activity?
jnz short SetIdleHandlerC2 ; Yes, switch to C2 idle

mov eax, [LastIdleStart] ; (eax) = last idle start time
sub eax, [LastIdleEnd] ; (eax) = length of last idle
and eax, 0ffffffh ; mask off sign
cmp eax, RequiredC3IdleTime ; was last idle long enough?
Jc short IdleC3Short ; no, go check for demotion

mov edx, PM_TMR
in eax, dx ; Get current time
mov [LastIdleStart], eax ; This is new LastIdleStart

mov edx, PM2_CNT ; disable bus master arbitration
in al, dx
mov ah, al
or al, ARB_DIS
out dx, al

mov edx, P_LVL3
in al, dx ; Enter C3.

Mov edx, PM_TMR
in eax, dx ; Ensure C3 entered
in eax, dx ; Get current time
mov [LastIdleEnd], eax ; This is new LastIdleEnd

mov edx, PM2_CNT ; enable bus master arbitration
mov al, ah
out dx, al

sti
ret

A demotion policy from the C3 handler could be to demote to C2 after two short C2 idles in a row or on
one short C3 idle time if the RequiredC3IdleTime and last execution time (difference from current time to
LastIdleEnd time) are sufficiently high.
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The IdleC3Multiprocessor handler can be used only on systems that identify themselves as having working
WBINDV instructions. The handler can take a long time to enter the C3 state, so both the promotion and
demotion from this handler would likely be conservative.

IdleC3Multiprocessor:
mov eax, [LastIdleStart] ; (eax) = last idle start time
sub eax, [LastIdleEnd] ; (eax) = length of last idle
and eax, 0ffffffh ; mask off sign
cmp eax, RequiredMPC3IdleTime ; was last idle long enough?
Jc short IdleC3Short ; no, go check for demotion

wbinvd ; requires wbinvd support

mov edx, PM_TMR
in eax, dx ; Get current time
mov esi, eax ; Remember it

mov edx, P_LVL3
in al, dx ; Enter C3.

mov edx, PM_TMR
in eax, dx ; Ensure C3 entered
in eax, dx ; Get current time
mov [LastIdleStart], esi ; New LastIdleStart
mov [LastIdleEnd], eax ; New LastIdleEnd

sti
ret
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9. Waking and Sleeping
ACPI defines a mechanism to transition the system between the working state (G0) and a sleeping state (G1) or
the soft-off (G2) state.  During transitions between the working and sleeping state, the context of the user’s
operating environment is maintained. ACPI defines the quality of the G1 sleeping state by defining the system
attributes of four types of ACPI sleeping states (S1, S2, S3, and S4). Each sleeping state is defined to allow
implementations that can trade-off cost, power, and wake-up latencies. Additionally, ACPI defines the sleeping
states such that an ACPI platform can support multiple sleeping states, allowing the platform to transition into a
particular sleeping state for a predefined period of time and then transition to a lower power/higher wake-up
latency sleeping state (transitioning through the G0 state) 15.
ACPI defines a programming model that provides a mechanism for the ACPI driver to initiate the entry into a
sleeping or soft-off state (S1-S5); this consists of a 3-bit field SLP_TYPx16 that indicates the type of sleep state
to enter, and a single control bit SLP_EN to start the sleeping process. The hardware implements different low-
power sleeping states and then associates these states with the defined ACPI sleeping states (through the
SLP_TYPx fields). The ACPI hardware creates a sleeping object associated with each supported sleeping state
(unsupported sleeping states are identified by the lack of the sleeping object). Each sleeping object contains two
constant 3-bit values that the ACPI driver will program into the SLP_TYPa and SLP_TYPb fields (in fixed
register space).
ACPI also defines an alternate mechanism for entering and exiting the S4 state that passes control to the BIOS to
save and restore platform context.  Context ownership is similar in definition to the S3 state, but hardware saves
and restores the context of memory to non-volatile storage (such as a disk drive), and the OS treats this as an S4
state with implied latency and power constraints. This alternate mechanism of entering the S4 state is referred to
as the S4BIOS transition.
Prior to entering a sleeping state (S1-S4), the ACPI driver will execute OEM-specific AML/ASL code contained
in the Prepare To Sleep, _PTS, control method. One use of the _PTS control method indicates to the embedded
controller what sleeping state the system will enter when the SLP_EN bit is set. The embedded controller can
then respond by executing the proper power-plane sequencing upon this bit being set.
Upon waking up, the OS will execute the Wake (_WAK) control method.  This control method again contains
OEM-specific AML/ASL code. One use of the _WAK control method requests the OS to check the platform for
any devices that might have been added or removed from the system while the system was asleep. For example,
a PC Card controller might have had a PC Card added or removed, and because the power to this device was off
in the sleeping state, the status change event was not generated.
This section discusses the initialization sequence required by an ACPI platform. This includes the boot
sequence, different wake-up scenarios, and an example to illustrate how to sue the new E820 calls.

9.1 Sleeping States
The illustration below shows the transitions between the working state, the sleeping states, and the Soft Off state.

                                                          
15 The OS uses the RTC wakeup feature to program in the time transition delay.  Prior to sleeping, the OS will
program the RTC alarm to the closest (in time) wakeup event:  either a transition to a lower power sleeping
state, or a calendar event (to run some application).
16 Note that there can be two fixed PM1x_CNT registers, each pointing to a different system I/O space region.
Normally a register grouping only allows a bit or bit field to reside in a single register group instance (a or b);
however, each platform can have two instances of the SLP_TYP (one for each grouping register: a and b).  The
\_Sx control method gives a package with two values:  the first is the SLP_TYPa value and the second is the
SLP_TYPb value.
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Figure 9-1   Example Sleeping States
ACPI defines distinct differences between the G0 and G1 system states.
• In the G0 state, work is being performed by the OS and hardware. The CPU or any particular hardware

device could be in any one of the defined power states (C0-C3 or D0-D3); however, some work will be
taking place in the system.

• In the G1 state, the system is assumed to be doing no work. Prior to entering the G1 state, the OS will place
devices in the D3 state; if a device is enabled to “wake up the system,” then the OS will place these devices
into the lowest Dx state for which the device still supports wakeup. This is defined in the power resource
description of that object; for information, see section 7. This definition of the G1 state implies:

• The CPU executes no OS code while in the G1 state.
• To the OS, hardware devices are not operating (except possibly to generate a wakeup event).
• ACPI registers are affected as follows:

• Wakeup event bits are enabled in the corresponding fixed or general-purpose registers
according to enabled wakeup options.

• PM1 control register is programmed for the desired sleeping state.
• WAK_STS is set by hardware in the sleeping state.

All sleeping states have these specifications. ACPI defines additional attributes that allow an ACPI platform to
have up to four different sleeping states, each of which have different attributes. The attributes were chosen to
allow differentiation of sleeping states that vary in power, wakeup latency, and implementation cost tradeoffs.
Running the processor at a divided clock rate is not an ACPI sleeping state (G1); this is a working (G0) state.
The CPU cannot be executing any instructions when in the sleeping state; the ACPI driver relies on this fact.  A
platform designer might be tempted to support a sleeping system by reducing the clock frequency of the system,
which allows the platform to maintain a low power state while at the same time maintaining communication
sessions that require constant interaction (as with some network environments). This is definitely a G0 activity
where an OS policy decision has been made to turn off the user interface (screen) and run the processor in a
reduced performance mode. This type of reduced performance state as a sleeping state is not defined by the
ACPI specification; ACPI assumes no code execution during sleeping states.
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ACPI defines attributes for four sleeping states: S1, S2, S3 and S4. (Note that S4 and S5 are very similar from a
hardware standpoint.) At least one sleeping state must be implemented by ACPI-compatible hardware. Many
platforms will support multiple sleeping states. ACPI specifies that a 3-bit binary number be associated with the
sleeping state (these numbers are given objects within ACPI’s root name space: \_S0, \_S1, \_S2, \_S3, \_S4 and
\_S5). The ACPI driver will do the following:
1. Pick the closest sleeping state supported by the platform and enabled waking devices.
2. Execute the Prepare To Sleep (_PTS) control method (which passes the type of intended sleep state to OEM

AML code) if it is an S1-S4 sleeping state. The _PTS control method is not executed for the S5 soft off
state.

3. If OS policy decides to enter the S4 state and chooses to use the S4BIOS mechanism and S4BIOS is
supported by the platform, the ACPI driver will pass control to the BIOS software by writing the
S4BIOS_REQ value to the SMI_CMD port.

4. If not using the S4BIOS mechanism, the ACPI driver gets the SLP_TYPx value from the associated
sleeping object (\_S1, \_S2, \_S3, \_S4 or \_S5).

5. Program the SLP_TYPx fields with the values contained in the selected sleeping object.
6. Set the SLP_EN bit to start the sleeping sequence. (This actually occurs on the same write operation that

programs the SLP_TYPx field in the PM1_CNT register.)
The Prepare To Sleep (_PTS) control method provides the BIOS a mechanism for performing some
housekeeping, such as writing the sleep type value to the embedded controller, before entering the system
sleeping state. Control method execution occurs “just prior” to entering the sleeping state and is not an event
synchronized with the write to the PM1_CNT register. Execution can take place several seconds prior to the
system actually entering the sleeping state, so no hardware power-plane sequencing takes place by execution of
the _PTS control method.
When the ACPI driver gets control again (after waking up) it will call the wakeup control method (_WAK). This
control method executes OEM-specific ASL/AML code to have the OS search for any devices that might have
been added or removed during the sleeping state.
The following sections describe the sleeping state attributes.

9.1.1 S1 Sleeping State
The S1 state is defined as a low wakeup latency sleeping state. In this state no system context is lost (CPU or
chip set), and the hardware is responsible for maintaining all system context, which includes the context of the
CPU, caches, memory, and all chipset I/O. Examples of S1 sleeping state implementation alternatives follow.

9.1.1.1 S1 Sleeping State Implementation (Example 1)
This example references an IA processor that supports the stop grant state through the assertion of the
STPCLK# signal. When SLP_TYPx is programmed to the S1 value (the OEM chooses a value, which is then
placed in the \_S1 object) and the SLP_ENx bit is subsequently set, the hardware can implement an S1 state by
asserting the STPCLK# signal to the processor, causing it to enter the stop grant state.
In this case, the system clocks (PCI and CPU) are still running. Any enabled wakeup event should cause the
hardware to de-assert the STPCLK# signal to the processor.

9.1.1.2 S1 Sleeping State Implementation (Example 2)
When SLP_TYPx is programmed to the S1 value and the SLP_ENx bit is subsequently set, the hardware will
implement an S1 state by doing the following:
1. Place the processor into the stop grant state.
2. Stop the processor’s input clock, placing the processor into the stop clock state.
3. Places system memory into a self-refresh or suspend-refresh state. Refresh is maintained by the memory

itself or through some other reference clock that is not stopped during the sleeping state.
4. Stop all system clocks (asserts the standby signal to the system PLL chip).  Normally the RTC will continue

running.
In this case, all clocks in the system have been stopped (except for the RTC’s clock). Hardware must reverse the
process (restarting system clocks) upon any enabled wakeup event.
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9.1.2 S2 Sleeping State
The S2 state is defined as a low wakeup latency sleep state. This state is similar to the S1 sleeping state, except
that the CPU and system cache context is lost (the OS is responsible for maintaining the caches and CPU
context). Additionally, control starts from the processor’s reset vector after the wakeup event. Before setting the
SLP_EN bit, the ACPI driver will flush the system caches. If the platform supports the WBINVD instruction (as
indicated by the WBINVD and WBINVD_FLUSH flags in the FACP table), the OS will execute the WBINVD
instruction. If the platform does not support the WBINVD instruction to flush the caches, then the ACPI driver
will attempt to manually flush the caches using the FLUSH_SIZE and FLUSH_STRIDE fields in the FACP
table. The hardware is responsible for maintaining chipset and memory context. An example of a S2 sleeping
state implementation follows.

9.1.2.1 S2 Sleeping State Implementation Example
When SLP_TYPx is programmed to the S2 value (found in the \_S2 object) and then the SLP_EN bit is set, the
hardware will implement an S2 state by doing the following:
• Stop system clocks (the only running clock is the RTC).
• Place system memory into a self or suspend refresh state.
• Power off the CPU and cache subsystem.
In this case, the CPU is reset upon detection of the wakeup event; however, core logic and memory maintain
their context. Execution control starts from the CPU’s boot vector. The BIOS is required to:
• Program the initial boot configuration of the CPU (such as the CPU’s MSR and MTRR registers).
• Initialize the cache controller to its initial boot size and configuration.
• Enable the memory controller to accept memory accesses.
• Call the waking vector.

9.1.3 S3 Sleeping State
The S3 state is defined as a low wakeup latency sleep state, where all system context is lost except for system
memory. CPU, cache, and device context are lost in this state; the OS and drivers must restore all device
context. Hardware must maintain memory context and restore some CPU and L2 configuration context. Control
starts from the processor’s reset vector after the wakeup event. Prior to setting the SLP_EN bit, the ACPI driver
will flush the system caches. If the platform supports the WBINVD instruction (as indicated by the WBINVD
and WBINVD_FLUSH flags in the FACP table), the OS will execute the WBINVD instruction. If the platform
does not support the WBINVD instruction then the ACPI driver will attempt to manually flush the cache using
the FLUSH_SIZE and FLUSH_STRIDE fields within the FACP table.  The hardware is responsible for
maintaining chip set and memory context. Examples of an S3 sleeping state implementation follows.

9.1.3.1 S3 Sleeping State Implementation Example
When SLP_TYPx is programmed to the S3 value (found in the \_S3 object) and then the SLP_EN bit is set, the
hardware will implement an S3 state by doing the following:
• Memory is placed into a low power auto or self refresh state.
• Devices that are maintaining memory isolate themselves from other devices in the system.
• Power is removed from the system. At this point, only devices supporting memory are powered (possibly

partially powered). The only clock running in the system is the RTC clock
In this case, the wakeup event re-powers the system and resets most devices (depending on the implementation).
Execution control starts from the CPU’s boot vector. The BIOS is required to:
• Program the initial boot configuration of the CPU (such as the MSR and MTRR registers).
• Initialize the cache controller to its initial boot size and configuration.
• Enable the memory controller to accept memory accesses.
• Jump to the waking vector.
Note that the BIOS is required to reconfigure the L2 and memory controller to their pre-sleeping states. The
BIOS can store the values of the L2 controller into the reserved memory space, where it can then retrieve the
values after waking up. The OS will call the Prepare To Sleep method (_PTS) once a session (prior to sleeping).
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The BIOS is also responsible for restoring the memory controller’s configuration. If this configuration data is
destroyed during the S3 sleeping state, then the BIOS needs to store this in a non-volatile memory area (as with
RTC CMOS RAM) to enable it to restore the values during the waking process.
When the OS re-enumerates buses coming out of the S3 sleeping state, it will discover any devices that have
come and gone, and configure devices as they are turned on.

9.1.4 S4 Sleeping State
The S4 sleeping state is the lowest power, longest wakeup latency sleeping state supported by ACPI.  In order to
reduce power to a minimum, its assumed that the hardware platform has powered off all devices. Because this is
a sleeping state, the platform context is maintained. Depending on how the transition into the S4 sleeping state
occurs, the responsibility for maintaining system context changes. S4 supports two entry mechanisms:  OS
initiated and BIOS initiated.  The OS-initiated mechanism is similar to the entry into the S1-S3 sleeping states;
the OS driver writes the SLP_TYPx fields and sets the SLP_EN bit. The BIOS-initiated mechanism occurs by
the OS transferring control to the BIOS by writing the S4BIOS_REQ value to the SMI_CMD port.
In the OS-initiated S4 sleeping state, the OS is responsible for saving all system context. Before entering the S4
state, the OS will save context of all memory. Upon awakening, the OS will then restore the system context.
When the OS re-enumerates buses coming out of the S4 sleeping state, it will discover any devices that have
come and gone, and configure devices as they are turned on.
In the BIOS-initiated S4 sleeping state, the OS is responsible for the same system context as described in the S3
sleeping state (BIOS restores the memory and some chip set context).  The S4BIOS transition transfers control
to the BIOS, allowing it to save context to non-volatile memory (such as a disk partition).

9.1.4.1 OS Initiated S4 Transition
If the OS supports the OS-initiated S4 transition, it will not generate a BIOS-initiated S4 transition. Platforms
that support the BIOS-initiated S4 transition also support the OS-initiated S4 transition.
The OS-initiated S4 transition is initiated by the OS driver by saving system context, writing the SLP_TYPx
fields, and setting the SLP_EN bit. Upon exiting the S4 sleeping state, the BIOS restores the chipset to its POST
condition, updates the hardware signature (described later in this section), and passes control to the OS through
a normal boot process.
When the BIOS builds the ACPI tables, it generates a hardware signature for the system. If the hardware
configuration has changed during an OS-initiated S4 transition, the BIOS should update the hardware signature
in the FACS table. A change in hardware configuration is defined to be any change in the platform hardware that
would cause the platform to fail when trying to restore the S4 context; this hardware is normally limited to boot
devices. For example, changing the graphics adapter or hard disk controller while in the S4 state should cause
the hardware signature to change. On the other hand, removing or adding a PC Card device from a PC Card slot
should not cause the hardware signature to change.

9.1.4.2 The S4BIOS Transition
For the BIOS-initiated S4 transition, entry into the S4 state occurs by the ACPI driver passing control to BIOS
to software. Transfer of control occurs by the OS driver writing the S4BIOS_REQ value into the SMI_CMD
port (these values are specified in the FACP table). After BIOS has control, it then saves the appropriate
memory and chip set context, and then places the platform into the S4 state (power off to all devices).
In the FACS memory table, there is the S4BIOS_F bit that indicates hardware support for the BIOS-initiated S4
transition.   If the hardware platform supports the S4BIOS state, it sets the S4BIOS_F flag within the FACS
memory structure prior to the OS issuing the ACPI_ENABLE command.  If the S4BIOS_F flag in the FACS
table is set, this indicates that the ACPI driver can request the BIOS to transition the platform into the S4BIOS
sleeping state by writing the S4BIOS_REQ value (found in the FACP table) to the SMI_CMD port (identified
by the SMI_CMD value in the FACP table).
Upon waking up the BIOS, software restores memory context and calls the waking vector (similar to wakeup
from an S3 state). Coming out of the S4BIOS state, the BIOS must only configure boot devices (so it can read
the disk partition where it saved system context). When the OS re-enumerates buses coming out of the S4BIOS
state, it will discover any devices that have come and gone, and configure devices as they are turned on.
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9.1.5 S5 Soft Off State
The S5 soft off state is used by the OS to turn the machine off. Note that the S5 state is not a sleeping state (it is
a G2 state) and no context is saved by the OS or hardware. Also note that from a hardware perspective, the S4
and S5 states are identical. When initiated, the hardware will sequence the system to a state similar to the off
state. The hardware has no responsibility for maintaining any system context (memory or I/O); however, it does
allow the wakeup due to a power button press. Upon waking up, the BIOS does a normal power-on reset,
loading the boot sector, and executing (not the waking vector, as it does not exist yet).

9.1.6 Transitioning from the Working to the Sleeping State
On a transition of the system from the working to the sleeping state, the following occurs:
1. The OS decides (through a policy scheme) to place the system into the sleeping state.
2. The OS examines all devices who are enabled to wake up the system and determines the deepest possible

sleeping state the system can enter to support the enabled wakeup functions. The _PRW named object under
each device is examined, as well as the power resource object it points to.

3. The OS executes the Prepare To Sleep (_PTS) control method, passing an argument that indicates the
desired sleeping state (1, 2, 3, or 4 representing S1, S2, S3, and S4).

4. The OS places all device drivers into their respective Dx state. If the device is enabled for wakeup, it enters
the Dx state associated with the wakeup capability. If the device is not enabled to wakeup the system, it
enters the D3 state.

5. OS saves any other processor’s context (other than the local processor) to memory
6. OS saves the local processor’s context to memory
7. OS writes the waking vector into the FACS table in memory.
8. OS clears the WAK_STS in the PM1a_STS and PM1b_STS registers.
9. OS flushes caches (only if entering S2 or S3).
10. If entering an S4 state using the S4BIOS mechanism, the OS writes the S4BIOS_REQ value (from the

FACP table) to the SMI_CMD port.  This passes control to the BIOS, which then transitions the platform
into the S4BIOS state.

11. If not entering an S4BIOS state, then the OS writes SLP_TYPa (from the associated sleeping object) with
the SLP_ENa bit set to the PM1a_CNT register.

12. The OS writes SLP_TYPb with the SLP_EN bit set to the PM1b_CNT register.
13. The OS loops on the WAK_STS bit (in both the PM1a_CNT and PM1b_CNT registers).
14. The system enters the specified sleeping state.

9.1.7 Transitioning from the Working to the Soft Off State
On a transition of the system from the working to the soft off state, the following occurs:
1. The OS prepares its components to shut down (flushing disk caches).
2. The OS writes SLP_TYPa (from the \_S5 object) with the SLP_ENa bit set to the PM1a_CNT register.
3. The OS writes SLP_TYPb (from the \_S5 object) with the SLP_ENb bit set to the PM1b_CNT register.
4. The system enters the Soft Off state.

9.2 Flushing Caches
Before entering the S2 or S3 sleeping states, the OS is responsible for flushing the system caches. ACPI
provides a number of mechanisms to flush system caches:
1. Use the IA instruction WBINVD to flush and invalidate platform caches.

WBINVD_FLUSH flag set HIGH in the FACP table indicates this support.
2. Use IA instruction WBINVD to flush but NOT invalidate the platform caches.

WBINVD flag set HIGH in the FACP table indicates this support.
3. Use FLUSH_SIZE and FLUSH_STRIDE to manually flush system caches.

Both the WBINVD and WBINVD_FLUSH flags both reset LOW indicate this support.
The manual flush mechanism has a number of caveats:
1. Largest cache is 1 MB in size (FLUSH_SIZE is a maximum value of 2 MB).
2. No victim caches (for which the manual flush algorithm is unreliable).
Processors with built-in victim caches will not support the manual flush mechanism and are therefore required to
support the WBINVD mechanism to use the S2 or S3 state.
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The manual cache flushing mechanism relies on the two FACP fields:
• FLUSH_SIZE:  Indicates twice the size of the largest cache in bytes
• FLUSH_STRIDE:  Indicates the smallest line size of the caches in bytes.
The cache flush size value is typically twice the size of the largest cache size, and the cache flush stride value is
typically the size of the smallest cache line size in the platform.  The OS will flush the system caches by reading
a contiguous block of memory indicated by the cache flush size.

9.3 Initialization
This section covers the initialization sequences for an ACPI platform. After a reset or wakeup from an S2, S3, or
S4 sleeping state (as defined by the ACPI sleeping state definitions), the CPU will start execution from its boot
vector. At this point, the initialization software has many options, depending on what the hardware platform
supports. This section describes at a high level what should be done for these different options. Figure 9-2
illustrates the flow of the boot-up software.
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Figure 9-2  BIOS Initialization
The processor will start executing at its power-on reset vector when waking from an S2, S3, or S4 sleeping state
during a power-on sequence or during a hard or soft reset. The sleeping attributes are such that the power-on
sequence (and hard and soft reset) is similar to waking up from an S4 state, the system is configured to a boot
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configuration, and then the OS loader is called. Waking up in the S2, S3, or S4 states only requires a partial
configuration by the hardware, followed by calling the waking vector (found in the FACP table).
First, the BIOS determines whether this is an S2 wakeup by examining the SLP_TYP register value, which
should be preserved between sleeping sessions. If this is an S2 wakeup, then the BIOS handler should enable the
memory controller to accept memory accesses (some programming might be required to exit the memory
controller from the auto refresh state). At this point, the BIOS reconfigures the caches (cache configuration data
having been saved in the ACPI NVS RAM area prior to sleeping), and then calls the waking vector (thus passing
control on to the OS).
If this was not a wakeup from an S2 sleeping state (an S3, S4, or boot), then the BIOS initializes the memory
controller, configures the caches, and enables access to memory and caches. For the S3 state, there are two
classes of hardware: those that lose the configuration of the memory controller when maintaining memory
context, and those that don’t. If the memory controller’s configuration is lost while in the S3 state, then this
configuration information should be stored in BIOS non-volatile memory (like RTC CMOS memory) before
suspending. Other information such as the cache controller’s configuration and processor configuration can be
stored in ACPI NVS RAM area, which is available after the memory controller has been enabled and read/write
access is enabled. After this is done, the BIOS can call the waking vector.
As mentioned previously, waking up from an S4 state is treated the same as a cold boot: the BIOS runs POST
and then initializes memory to contain the required system tables. After it has finished this, it can call the OS
loader, and control is passed to the OS.
To wake from S4 using the S4BIOS mechanism, the BIOS runs POST, restores memory context, and calls the
waking vector.

9.3.1 Turning On ACPI
When a platform initializes from a cold boot (mechanical off or from an S4 state), the hardware platform is
assumed to be configured in a legacy configuration. From these states, the BIOS software initializes the
computer as it would for a legacy operating system. When control is passed to the operating system, the OS will
then enable the ACPI mode by first scanning memory for the ACPI tables, and then generates a write of the
ACPI_ENABLE value to the SMI_CMD port (as described in the FACP table). The hardware platform will set
the SCI_EN bit to indicate to the OS that the hardware platform is now configured for ACPI.
When the platform is awakening from an S1, S2 or S3 state, the OS assumes the hardware is already in the ACPI
mode and will not issue an ACPI_ENABLE command to the SMI_CMD port.

9.3.2 BIOS Initialization of Memory
During a power-on reset, an exit from an S4 sleeping state, or an exit from an S5 soft-off state, the BIOS needs
to initialize memory. This section explains how the BIOS should configure memory for use by a number of
features:
• ACPI tables.
• BIOS memory that wants to be saved across S4 sleeping sessions and should be cached.
• BIOS memory that does not require saving and should be cached.
For example, the configuration of the platform’s cache controller requires an area of memory to store the
configuration data. During the wakeup sequence, the BIOS will re-enable the memory controller and can then
use its configuration data to reconfigure the cache controllers. To support these three items, the IA-PC INT15
E820 specification has been updated with two new memory range types:
• ACPI Reclaim Memory. Memory identified by the BIOS that contains the ACPI tables. This memory can

be any place above 1 MB and contains the ACPI tables. When the OS is finished using the ACPI tables, it is
free to reclaim this memory for system software use (application space).

• ACPI Non-Volatile-Sleeping Memory (NVS). Memory identified by the BIOS as being reserved by the
BIOS for its use. The OS is required to tag this memory as cacheable, and to save and restore its image
before entering an S4 state. Except as directed by control methods, the OS is not allowed to use this
physical memory. The ACPI driver will call the Prepare To Sleep (_PTS) control method some time before
entering a sleeping state, to allow the platform’s AML code to update this memory image before entering
the sleeping state. After the system awakes from an S4 state, the OS will restore this memory area and call
the wakeup control method (_WAK) to enable the BIOS to reclaim its memory image.

Note: The memory information returned from INT15 E820 should be the same before and after an S4 sleep.
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These new memory range types are in addition to the previous E820 memory types of system and reserved.
When the OS is first booting, it will make E820 calls to obtain a system memory map. As an example, the
following memory map represents a typical IA-PC platform physical memory map.
For more information about the INT15H, E820H definition, see section 14.1.
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Figure 9-3   Example Physical Memory Map

The names and attributes of the different memory regions are listed below:
• 0 - 640K: Compatibility Memory. Application executable memory for an 8086 system.
• 640K - 1MB: Compatibility Holes. Holes within memory space that allow accesses to be directed to the

PC-compatible frame buffer (A0000h-BFFFFh), to adapter ROM space (C0000h-DFFFFh), and to system
BIOS space (E0000h-FFFFFh).

• 1MB - 8MB:  Contiguous RAM. An area of contiguous physical memory addresses. The OS requires this
memory to be contiguous in order for its loader to load the OS properly on boot up. (No memory-mapped
I/O devices should be mapped into this area.)

• 8MB - Top of Memory1: This area contains memory to the “top of memory1” boundary. In this area,
memory-mapped I/O blocks are possible.

• Top of Memory1- Boot Base: This area contains the bootstrap ROM.
The platform should decide where the different memory structures belong, and then configure the E820 handler
to return the appropriate values.
For this example, the BIOS will report the system memory map by E820 as shown in Figure 9-4. Note that the
memory range from 1 MB to top of memory is marked as system memory, and then a small range is additionally
marked as ACPI reclaim memory. A legacy OS that does not support the E820 extensions will ignore the
extended memory range calls and correctly mark that memory as system memory.



Advanced Configuration and Power Management Interface Specification 9-158

Intel/Microsoft/Toshiba

Boot  ROM

No Memory

Compat ib i l i ty
Memory

Compat ib i l i ty
Ho les

Cont iguous
R A M

- ACPI Recla im Memory (E820)

-  ACPI  NVS Memory (E820)

NVS Memory

Reseved

Above 8 Mbyte
R A M

ACPI Tables

-   Reserved Memory (E820)

-  System Memory (E820)

ACPI  Rec la im
Memory

ACPI  NVS
Memory

Reserved
Memory

System Memory

System Memory

Reserved
Memory

Reserved
Memory

Avai lable
Address space

Avai lable
Address space

0

640 KByte

1 MByte

Top of  Memory1

Top of  Memory2

8 MBytes

Figure 9-4  Memory as Configured after Boot
Also, from the Top of Memory1 to the Top of Memory2, the BIOS has set aside some memory for its own use
and has marked as reserved both ACPI NVS Memory and Reserved Memory. A legacy OS will throw out the
ACPI NVS Memory and correctly mark this as reserved memory (thus preventing this memory range from being
allocated to any add-in device).
The OS will call the _PTS control method prior to initiating a sleep (by programming the sleep type, followed
by setting the SLP_EN bit). During a catastrophic failure (where the integrity of the AML code interpreter or
driver structure is questionable), if the OS decides to shut the system off, it will not issue a _PTS, but will
immediately issue a SLP_TYP of “soft off” and then set the SLP_EN bit. Hence, the hardware should not rely
solely on the _PTS control method to sequence the system to the “soft off” state. After waking up from an S4
state, the OS will restore the ACPI NVS memory image and then issue the _WAK control method that informs
BIOS that its memory image is back.

9.3.3 OS Loading
At this point the BIOS has passed control to the OS, either by using the OS boot loader (a result of awakening
from an S4/S5 or boot condition) or the OS waking vector (a result of awakening from an S2 or S3 state). For
the Boot OS Loader path, the OS will get the system memory map through an INT15H E820h call. If the OS is
booting from an S4 state, it will then check the NVS image file’s hardware signature with the hardware signature
within the FACS table (built by BIOS) to determine whether it has changed since entering the sleeping state
(indicating that the platforms fundamental hardware configuration has changed during the current sleeping
state). If the signature has changed, the OS will not restore the system context and can boot from scratch (from
the S4 state). Next, for an S4 wakeup, the OS will check the NVS file to see whether it is valid. If valid, then the
OS will load the NVS image into system memory. Next, the OS will ask BIOS to switch into ACPI mode and
will reload the memory image from the NVS file.
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Figure 9-5   OS Initialization
If an NVS image file did not exist, then the OS loader will load the OS from scratch. At this point, the OS will
generate a _WAK call that indicates to the BIOS that its ACPI NVS memory image has been successfully and
completely updated.

9.3.4 Turning Off ACPI
ACPI provides a mechanism that enables the operating system to disable ACPI. The following occurs:
1. The OS unloads all ACPI drivers (including the APIC driver).
2. The OS disables all ACPI events.
3. The OS finishes using all ACPI registers.
4. The OS issues an I/O access to the port at the address contained in the SMI_CMD field (in the FACP table)

with the value contained in the ACPI_DISABLE field (in the FACP table).
5. BIOS then remaps all SCI events to legacy events and resets the SCI_EN bit.
6. Upon seeing the SCI_EN bit cleared, the ACPI operating system passes control to the legacy mode.
When and if the legacy operating system returns control to the ACPI OS, if the legacy OS has wiped out the
ACPI tables (in reserved memory and ACPI NVS memory), then the ACPI OS will reboot the system to allow
the BIOS to re-initialize the tables.
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10. ACPI-Specific Device Objects
This section specifies the ACPI device-specific objects. The system status indicator objects, which go in the \_SI
region of the Name Space, are also specified in this section.
The device-specific objects specified in this section are objects for the following types of devices:
• Control method battery devices (for more information about control method battery devices, see section

11.2).
• Control method lid devices (for more information about control method lid devices, see section 10.3.
• Control method power and sleep button devices (for more information about control method power and

sleep button devices, see section 4.7.2.2.
• Embedded controller devices (for more information about embedded controller devices, see section 13).
• System Management Bus (SMBus) host controller (for more information, see section 13.9.)
• Fan devices (for more information about fan devices, see section 12).
• Generic bus bridge devices.
• IDE control methods.
For a list of the ACPI Plug and Play ID values for all these devices, see section 5.6.4.

10.1 \_SI System Indicators
ACPI provides an interface for a variety of simple and icon-style indicators on a system. All indicator controls
are in the \_SI portion of the name space. The following table lists all defined system indicators. (Note that there
are also per-device indicators specified for battery devices).

Table 10-1  System Indicator Control Methods

Object Description
_SST System status indicator
_MSG Messages waiting indicator

10.1.1 _SST
Operating software invokes this control method to set the system status indicator as desired.

Arguments:
0 0 - No system state indication.  Indicator off.

1 - Working.
2 - Waking.
3 - Sleeping.  Used to indicate system state S1, S2 or S3.
4 - Sleeping with context saved to non volatile storage.

10.1.2 _MSG
This control method sets the systems message waiting status indicator.

Arguments:
0 Number of messages waiting.

10.2 Control Method Battery Device
A battery device is required to either have a ACPI Smart Battery Table or a Control Method Battery (CMBatt)
interface. In the case of an ACPI Smart Battery Table, the Definition Block needs to include a Bus / Device
Package for the SMBus host controller. This will install an OS specific driver for the SMB bus, which in turn
will locate the battery selector, and charger SMB devices.
The Control Method Battery interface is defined in section 11.2.

10.3 Control Method Lid Device
For systems with a lid, the lid status  can either be implemented using the fixed register space as defined in
section 4, or implemented in AML code as a control method lid device.
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To implement a control method lid device, implement AML code that issues notifications for the device
whenever the lid status has changed. The _LID control method for the lid device must be implemented to report
the current state of the lid as either opened or closed.

The lid device can support _PRW and _PSW methods to select the wake functions for the lid when the lid
transitions from closed to opened.

The Plug and Play ID of an ACPI control method lid device is PNP0C0D.

Table 10-2  Control Method Lid Device

Object Description
_LID Returns the current status of the lid

10.3.1.1.1.1 _LID
Evaluates to the current status of the lid.
Result code:

Zero: The lid is closed.
Non-zero: The lid is open.

10.4 Control Method Power and Sleep Button Devices
The system’s power or sleep button can either be implemented using the fixed register space as defined in
section 4.7.2.2, or implemented in AML code as a control method power button device. In either case, the power
button override function or similar unconditional system power or reset functionality is still implemented in
external hardware.

To implement a control method power or sleep button device, implement AML code that delivers two types of
notifications concerning the device. The first is Notify (Object, 0x80) to signal that the button was pressed while
the system was in the S0 state to indicate that the user wants the machine to transition from S0 to some sleeping
state. The other notification is Notify (Object, 0x2) to signal that the button was pressed while the system was in
an S1 to S4 state and to cause the system to wake. When the button is used to wake the system, the wake
notification (Notify (Object, 0x2)) must occur after the OS has actually awakened, and a button pressed
notification (Notify (Object, 0x80)) must not occur.

The Wake Notification indicates that the system has awakened because the user pressed the button and therefore
a complete system resume should occur (for example, turn on the display immediately, and so on).

10.5 Embedded Controller Device
Operation of the embedded controller host controller register interface requires that the embedded controller
driver has ACPI-specific knowledge. Specifically, the driver needs to provide an “operational region” of its
embedded controller address space, and needs to use a general-purpose event (GPE) to service the host
controller interface. For more information about an ACPI-compatible embedded controller device, see section
13.
The embedded controller device object provides the _HID (Hardware ID) of an ACPI integrated embedded
controller device of PNP0C09 and the host controller register locations using the device standard methods. In
addition, the embedded controller must be declared as a named device object that includes a set of control
methods. For more information, see section 13.11).

10.6 Fan Device
A fan device is assumed to be in operation when it is in the D0 state. Thermal zones reference fan device(s) as
being responsible for primarily cooling within that zone. Note that multiple fan devices can be present for any
one thermal zone. They might be actual different fans, or they might be used to implement one fan of multiple
speeds (for example, by turning both “fans” on the one fan will run full speed).
The Plug and Play ID of a fan device is PNP0C0B. For more information about fan devices, see section 12.
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10.7 Generic Bus Bridge Device
A generic bus bridge device is a bridge that does not require a special OS driver because the bridge does not
provide/require any features not described within the standard ACPI device functions. The resources the bridge
supports are supported through the standard ACPI resource handling. All device enumeration for child devices
is supported through standard ACPI device enumeration (for example, name space), and no other features of the
bus are needed by OS drivers. Such a bridge device is identified with the Plug and Play ID of PNP0A05 or
PNP0A06.

A generic bus bridge device is typically used for integrated bridges that have no other means of controlling them
and that have a set of well-known devices behind them. For example, a  portable computer can have a “generic
bus bridge” known as an EIO bus that bridges to some number of Super-IO devices. The bridged resources are
likely to be positively decoded as either a function of the bridge or the integrated devices. In either case, for this
example, a generic bus bridge device would be used to declare the bridge, then further devices would be
declared below the bridge for the integrated Super-IO devices.

10.8 IDE Controller Device
A method is supported to allow the OEM to define how the IDE controller’s transfer mode register is set.  The
operating system’s IDE device driver is responsible for providing the transfer ns timings to set, and to use either
a device-specific register to make the IDE controller mode setting17 or the device’s ACPI control method to
effect the IDE transfer timing settings. The OS native driver is responsible for setting this whenever the IDE
controller has been in the D3 state.

Table 10-3   IDE Specific Controls

Object Description
_STM Optional control method to use to set the IDE controller transfer timings.

10.8.1 _STM
This Control Method sets the IDE controller’s transfer timings to the setting requested. The AML code is
required to convert and set the ns timing to the appropriate transfer mode settings for the IDE controller.

Arguments:
0 The timing for drive 0 on the channel
1 The timing for drive 1 on the channel

Result code:
None

                                                          
17 This is the prefer way to set the IDE controller mode; however, not all controllers will fit into this model.
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11. Power Source Devices
This section specifies the battery and AC adapter device objects the OS uses to manage power resources.
A battery device is required to either have a Smart Battery subsystem or a Control Method Battery (CMBatt)
interface as described in this section. The OS is required to be able to connect and manage a battery on either of
these interfaces. This section describes these interfaces.
In the case of a compatible ACPI Smart Battery Table, the Definition Block needs to include a Bus / Device
package for the SMB host controller. This will install an OS-specific driver for the SMBus, which in turn will
locate the battery and battery selector SMB devices.

11.1 Smart Battery Subsystems
Smart Batteries are defined as using the smart battery subsystem as defined by the:

• System Management Bus Specification (SMBS),
• Smart Battery Data Specification (SBDS),
• Smart Battery Selector Specification (SBSS), and the
• Smart Battery Charger Specification (SBCS)

An ACPI compatible smart battery subsystem consists of:
• An SMBus host controller (CPU to SMB host controller) interface
• At least one smart battery
• A smart battery charger
• A smart battery selector if more than one smart battery is supported

In such a subsystem, a standard way of communicating with a smart battery (SBDS) and smart charger (SBCS)
is through the SMBus (SMBS) physical protocols.  The smart battery selector provides event notification
(battery insertion/removal, …) and charger SMBus routing capability for any smart battery subsystem.  A typical
smart battery subsystem is illustrated below:
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Figure 11-1  Typical Smart Battery Subsystem

SMBus defines a fixed 7-bit slave address per device.  This means that all batteries in the system have the same
address (defined to be 0xB).  The slave addresses associated with smart battery subsystem components are
shown in the following table.

Table 11-1  Example SMBus Device Slave Addresses

SMBus Device Description SMBus Slave Address (A0-A6)
SMBus Host Slave Interface 0x8
SBS Charger/Charger Selector 0x9
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SMBus Device Description SMBus Slave Address (A0-A6)
SBS Selector 0xA
SBS Battery 0xB

Each SMBus device has up to 256 registers that are addressed through the SMBus protocol’s Command value.
SMBus devices are addressed by providing the slave address with the desired register’s Command value.  Each
SMBus register can have non-linear registers, that is command register 1 can have a 32 byte string, while
command register 1 can have a byte, and command register 2 can have a word.
The SMBus host slave interface provides a standard mechanism for the host CPU to generate SMBus protocol
commands which are required to communicate with SMBus devices (i.e., the smart battery components).  ACPI
defines such an SMBus host controller that resides in embedded controller address space, however an OS can
support any SMBus host controller which has a native SMBus host controller device driver.
The SBS selector provides a standard programming model to control multiple smart batteries in a smart battery
subsystem.  A smart battery selector provides the following types of battery management functions:

• Event notification for battery insertion removal
• Event notification for AC power connected or disconnected
• Status/Control of which battery is communicating with the SMBus host controller
• Status/Control of  which battery is powering the system
• Status/Control of which battery is connected to the charger
• Status of which batteries are present in the system
• Event notification when the selector switches from one power source to another
• Hardware switching to a secondary battery upon the primary battery running low
• Hardware switching to AC

A smart battery selector function can reside in a standalone SMBus slave device (SBS Selector which responds
to the 0xA slave address), or may be present within a smart charger device (SBS Charger which responds to the
0x9 slave address).  If both smart charger and stand alone selectors are present in the same smart battery
subsystem, then the driver assumes that the stand alone selector is wired to the batteries.
The SBS charger is an SMBus device that provides a standard  programming model to control the charging of
smart batteries present in a smart battery subsystem.  For single battery systems the smart charger is also
responsible for notifying the system of the battery and AC status.
The smart battery provides intelligent chemistry-independent power to the system.  The battery is capable of
informing the smart charger its charging requirements (which provides chemistry independence), and providing
battery status and alarm features needed for platform battery management.

11.1.1 ACPI Smart Battery Charger Requirements
The smart battery charger specification 1.0 defines an optional mechanism for notifying the system that the
battery or AC status has changed. ACPI requires that this interrupt mechanism be through the SMBus Alarm
Notify mechanism.
For a charger only device this requires the smart charger, upon a battery or AC status change, to generate an
SMBus Alarm Notify. This generates an event from the SMBus host controller after the contents of the
ChargerStatus() command register (0x13) are placed in the SMBus host slave data port and the slave address of
the messaging device (in this case, the charger 18) is placed in the SMBus host slave command port (at slave
address 0x8).
If a smart battery charger contains the optional selector function (as indicated by ChargerSpecInfo() command
register, 0x11, bit 4), this requires the smart charger, upon a battery or AC status change, to generate an SMBus
Alarm Notify. This generates an event from the SMBus host controller after the contents of the SelectorState()
command register (0x21) are placed in the SMBus host slave data port and the slave address of the messaging
device (in this case, the charger18) is placed in the SMBus host slave command port (at slave address 0x8).

                                                          
18 Note that the 1.0 SMBus protocol specification is ambiguous about the definition of the “slave address”
written into the command field of the host controller. In this case, the slave address is actually the combination
of the 7-bit slave address and the Write protocol bit. Therefore, bit 0 of the initiating device’s slave address is
aligned to bit 1 of the host controller’s slave command register, bit 1 of the slave address is aligned to bit 2 of
the controller’s slave command register, and so on.
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When the selector function is present in the smart charger, Battery and AC status changes should be reported
through the SelectorState() notify and not the ChargerStatus() notify.

11.1.2 ACPI Smart Battery Selector Requirements
The smart battery selector specification 1.0 defines an optional mechanism for notifying the system that the
battery or AC status has changed. ACPI requires that this interrupt mechanism be through the SMBus Alarm
Notify mechanism.
For a smart battery selector device this requires the smart battery selector, upon a battery or AC status change, to
generate an SMBus Alarm Notify. This generates an event from the SMBus host controller after the contents of
the SelectorState() command register (0x1) are placed in the SMBus host slave data port and the slave address
of the messaging device (in this case, the selector18) is placed in the SMBus host slave command port (at slave
address 0x8).

11.1.3 Smart Battery Objects
The smart battery subsystems requires a number of objects to define its interface. These are summarized below:

Table 11-2  Smart Battery Objects

Object Description
_HID This is the hardware ID named object which contains a string.  For smart battery subsystems

this object returns the value of “ACPI0002”.  This identifies the smart battery subsystem to the
smart battery driver.

_SBS This is the smart battery named object which contains a Dword.  This named object returns the
configuration of the smart battery subsystem  and is encoded as follows:

0: Maximum of one smart battery and no selector.
1: Maximum of one smart battery and a selector.
2: Maximum of two smart batteries and a selector.
3: Maximum of three smart batteries and a selector.
4: Maximum of four smart batteries and a selector.

The maximum number of batteries is for the system. Therefore, if the platform is capable of
supporting four batteries, but only two are normally present in the system, then this field should
return 4. Note that a value of 0 indicates a maximum support of one battery and there is no
selector present in the system.

11.1.4 Smart Battery Subsystem Control Methods
As the SMBus is not an enumerable bus, all devices on the bus are required to be declared in ACPI name space.
As the smart battery driver understands the SBS battery, charger, and selector; only a single device needs to be
declared per smart battery subsystem.  The driver gets information about the subsystem through the hardware ID
(which defines a smart battery subsystem) and the number of batteries supported on this subsystem (_SBS
named object).  The ACPI smart battery table indicates the energy levels of the platform at which the system
should warn the user and then enter a sleeping state.  The smart battery driver then reflects these as threshold
alarms for the smart batteries.
The _SBS control method returns the configuration of the smart battery subsystem. This named object returns a
Dword value with a number from 0 to 4.  If the number of batteries is greater than 0, then the smart battery
driver assumes that an SBS selector is present. If 0, then the smart battery driver assumes a single smart battery
and no SBS selector.

11.1.4.1 Example Single Smart Battery Subsystem
This section illustrates how to define a smart battery subsystem containing a single smart battery and charger.
The platform implementation is illustrated below:
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Figure 11-2  Single Smart Battery Subsystem

In this example the platform is using an SMBus host controller that resides within the embedded controller and
meets the ACPI standard for an embedded controller interface and SMBus host controller interface. The
embedded controller interface sits at system I/O port addresses 0x62 and 0x66.  The SMBus host controller is at
base address 0x80 within embedded controller address space (as defined by the ACPI embedded controller
specification) and responds to events on query value 0x30.
In this example the smart battery subsystem only supports a single battery.  The ASL code for describing this
interface is shown below:

Device(EC0) {
Name(_HID, EISAID("PNP0C09"))
Name(_CRS,

ResourceTemplate(){ // port 0x62 and 0x66
IO(Decode16, 0x62, 0x62, 0, 1),
IO(Decode16, 0x66, 0x66, 0, 1)
}

)
Name(_GPE, 0)
Device (SMB0) {

Name(_HID, "ACPI0001") // Smart Battery Host Controller
Name(_EC, 0x8030) // EC offset (0x80), Query (0x30)

Device(SBS0){ // Smart Battery Subsystem
Name(_HID, "ACPI0002") // Smart Battery Subsystem ID
Name(_SBS, 0x1) // Indicates support for one battery

} // end of SBS0
} // end of SMB0

} // end of EC

11.1.4.2 Example: Multiple Smart Battery Subsystem
This section illustrates how to define a smart battery subsystem that contains three smart batteries, a SBS
selector and a charger.  The platform implementation is illustrated below:
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Figure 11-3  Smart Battery Subsystem

In this example, the platform is using an SMBus host controller that resides within the embedded controller and
meets the ACPI standard for an embedded controller interface and SMBus host controller interface.  The
embedded controller interface sits at system I/O port addresses 0x100 and 0x101.  The SMBus host controller
resides at base address 0x90 within embedded controller address space (as defined by the ACPI embedded
controller specification) and responds to events on query value 0x31.
In this example the smart battery subsystem supports three smart batteries, an SBS charger and an SBS selector.
The ASL code for describing this interface is shown below:

Device(EC1) {
Name(_HID, EISAID("PNP0C09"))
Name(_CRS,

ResourceTemplate(){ // port 0x100 and 0x101
IO(Decode16, 0x100, 0x100, 0, 2)
}

)
Name(_GPE, 1)
Device (SMB1) {

Name(_HID, "ACPI0001") // Smart Battery Host Controller
Name(_EC, 0x9031) // EC offset (0x90), Query (0x31)
Device(SBS1){ // Smart Battery Subsystem

Name(_HID, "ACPI0002") // Smart Battery Subsystem ID
Name(_SBS, 0x3) // Indicates support for three batteries
} // end of SBS1

} // end of SMB1
} // end of EC

11.2 Control Method Batteries
The following section illustrates the operation and definition of the control method battery.

11.2.1 Battery Events
The AML code handling an SCI for a battery event notifies the system which battery’s the status may have
changed. The OS uses the _BST control method to determine the current status of the batteries and what action,
if any, should be taken (for more information about the _BST control method, see section 11.2.2). The typical
action is to notify applications monitoring the battery status to provide the user with an up-to-date display of the
system battery state. But in some cases the action may involve generating an alert or even forcing a system into a
sleeping state. In any case, any changes in battery status should generate an SCI in a timely manner to keep the
system power state UI consistent with the actual state of the system battery (or batteries).
As with other devices, when a battery device is inserted to the system or removed from the system, the hardware
asserts a GP event. The AML code handler for this event will issue a Notify(battery_device , 0x00)  or
Notify(battery_device ,0x01) on the battery device to initiate the standard device Plug and Play actions.
When the present state of the battery has changed or when the trip point set by the _BTP control method is
crossed, the hardware will assert a GP event. The AML code handler for this event issues a
Notify(battery_device,0x80) on the battery device.
In the unlikely case that the battery becomes critical, AML code interface can issue Notify(battery_device,
0x80) and reports the battery critical flag in the _BST object. The OS performs critical shutdown.

11.2.2 Battery Control Methods
The Control Method Battery (CMBatt) is a battery with an AML code interface between the battery and the host
PC. The battery interface is completely accessed by AML code control methods, allowing the OEM to use any
type of battery and any kind of communication interface supported by ACPI.
A Control Method Battery is described as a device object. Each device object supporting the CMBatt interface
contains the following additional control methods. When there are two or more batteries in the system, each
battery will have an independent device  object in the name space.
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Table 11-3  Battery Control Methods

Object Description
_BIF Returns static information about a battery (i.e., model number, serial number, design voltage,

etc.)
_BST Returns the current battery status (i.e., dynamic information about the battery such as whether

the battery is currently charging or discharging, an estimate of the remaining battery capacity,
etc.).

_BTP Sets the Battery Trip point which generates an SCI when the battery(s) capacity reaches the
specified point.

_PCL List of pointers to the device objects representing devices powered by the battery.
_STA Returns general status of the battery (for a description of the _STA control method, see section

6.3.5.

11.2.2.1 _BIF
This object returns the static portion of the Control Method Battery information. This information remains
constant until the battery is changed.
Arguments:

None
Results code:
Package {
// ASCIIZ is ASCII character string terminated with
// a 0x00.

Power Unit //DWORD
Design Capacity //DWORD
Last Full Charge Capacity //DWORD
Battery Technology //DWORD
Design Voltage //DWORD
Design Capacity of Warning //DWORD
Design Capacity of Low //DWORD
Battery Capacity Granularity 1 //DWORD
Battery Capacity Granularity 2 //DWORD
Model Number //ASCIIZ
Serial Number //ASCIIZ
Battery Type //ASCIIZ
OEM Information //ASCIIZ

}

Table 11-4  _BIF Method Result Codes

Field Format Description
Power Unit DWORD Indicates the units used by the battery to report its capacity

and charge/discharge rate information to the OS.
0x00000000 = Capacity information is reported in [mWh] and
charge/discharge rate information in [mW].
0x00000001 = Capacity information is reported in [mAh] and
charge/discharge rate information in [mA].

Design Capacity DWORD Battery’s design capacity. Design Capacity is the nominal
capacity of a new battery. The Design Capacity value is
expressed as power [mWh] or current [mAh] depending on
the Power Unit value.
0x000000000 - 0x7FFFFFFF (in [mWh] or [mAh] )
0xFFFFFFFF = Unknown design capacity

Last Full Charge
Capacity

DWORD Predicted battery capacity when fully charged. The Last Full
Charge Capacity value is expressed as power (mWh) or
current (mAh) depending on the Power Unit value:
0x000000000h - 0x7FFFFFFF (in [mWh] or [mAh] )
0xFFFFFFFF = Unknown last full charge capacity

Battery
Technology

DWORD 0x00000000 = Primary (ex., non-rechargeable)
0x00000001 = Secondary (ex., rechargeable)
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Field Format Description
Design Voltage DWORD Nominal voltage of a new battery.

0x000000000 - 0x7FFFFFFF in [mV]
0xFFFFFFFF = Unknown design voltage

Design capacity of
Warning

DWORD OEM-designed battery warning capacity.
0x000000000 - 0x7FFFFFFF in [mWh] or [mAh]

Design capacity of
Low

DWORD OEM-designed low battery capacity.
0x000000000 - 0x7FFFFFFF in [mWh] or [mAh]

Battery capacity
granularity 1

DWORD Battery capacity granularity between low and warning in
[mAh] or [mWh]

Battery capacity
granularity 2

DWORD Battery capacity granularity between warning and Full in
[mAh] or [mWh]

Model Number ASCIIZ OEM-specific Control Method Battery model number
Serial Number ASCIIZ OEM-specific Control Method Battery serial number
Battery Type ASCIIZ The OEM-specific Control Method Battery type.
OEM Information ASCIIZ OEM-specific information for the battery that the

UI uses it to display the OEM information about the Battery.
If the OEM does not support this information, this should be
reserved as 0x00.

Note: A secondary-type battery should report the corresponding capacity (except for Unknown).
Note: On a multiple battery system, all batteries in the system should return the same granularity.
Note: OSes prefer these control methods to report data in terms of power (watts).

11.2.2.2 _BST
This object that returns the present battery status. Whenever the Battery State value changes, the system will
generate an SCI to notify the OS.
Arguments:

None
Results code:
Package{

Battery State //DWORD
Battery Present Rate //DWORD
Battery Remaining Capacity //DWORD
Battery Present Voltage //DWORD

}

Table 11-5   _BST Method Result Codes

Field Format Description
Battery State DWORD Bit values.  Note: The Charging bit and the Discharging bit

are mutually exclusive and must not both be set at the same
time.
Bit0 = 1 indicates the battery is discharging
Bit1 = 1 indicates  the battery is charging
Bit2 = 1 indicates the battery is in the critical energy state
Even in critical state, hardware should report the
corresponding charging/discharging state. When the battery
reports critical energy state and also reports the battery is
discharging (bits 0 and 2 are both set) the OS will perform a
critical system shutdown.
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Field Format Description
Battery Present
Rate

DWORD Returns the power or current being supplied or accepted
through the battery's terminals (direction depends on the
Battery State value). The Battery Present Rate value is
expressed as power [mWh] or current [mAh] depending on
the Power Unit value.
Batteries that are rechargeable and are in the discharging state
are required to return a valid Battery Present Rate value.
0x00000000 - 0x7FFFFFFF in [mW] or [mA]
0xFFFFFFFF = Unknown rate

Battery
Remaining
Capacity

DWORD Returns the estimated remaining battery capacity. The Battery
Remaining Capacity value is expressed as power [mWh] or
current [mAh] depending on the Power Unit value.
Batteries that are rechargeable are required to return a valid
Battery Remaining Capacity value.
0x00000000 - 0x7FFFFFFF in [mWh] or [mAh]
0xFFFFFFFF = Unknown capacity

Battery Present
Voltage

DWORD Battery Present Voltage returns the voltage across the
battery’s terminals.
Batteries that are rechargeable must report Battery Present
Voltage.
0x000000000 - 0x7FFFFFFF in [mV]
0xFFFFFFFF = Unknown voltage (Note: Only is a Primary
battery can report Unknown voltage).

11.2.2.3 _BTP
This object is used to set a trip-point to generate an SCI when the Battery Remaining Capacity reaches the value
specified in the _BTP object. This information will be kept by the system.
If the battery does not support this function, the _BTP control method is not located in the name space. In this
case, the OS must poll the Battery Remaining Capacity value.
Arguments:

Level at which to set the trip point:
0x00000001 - 0x7FFFFFFF (in units of mWh or mAh, depending on the Power Units value)
0x00000000 = Clear the trip point

Results code:
None.

11.3 AC Adapters and Power Source Objects
The Power Source objects describe the power source used to run the system.

Table 11-6   Power Source Control Methods

Object Description
_PSR Returns present power source device
_PCL List of pointers to powered devices.

11.3.1 _PSR
Returns the current power source devices.  Used for the AC adapter and is located under the AC adapter object
in name space. Used to determine if system is running off the AC adapter.
Arguments:

None
Results code:



Power Source Devices 11-171

Intel/Microsoft/Toshiba

0x00000000 = Off-line
0x00000001 = On-line

11.3.2 _PCL
This object evaluates to a list of pointers, each pointing to a device or a bus powered by the power source
device. Pointing a bus means that  all devices under the bus is powered by it power source device.

11.4 Power Source Name Space Example
The ACPI name space for a computer with an AC adapter and two batteries associated with a docking station
that has an AC adapter and a battery is shown in the illustration (Figure 11.4) below.
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Figure 11-4   Power Source Name Space Example that Includes a Docking Station
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12. Thermal Management
This section specifies the objects the OS uses for thermal management of a platform.

12.1 Thermal Control
ACPI allows the OS to be proactive in its system cooling policies. With the OS in control of the operating
environment, cooling decisions can be made based on application load on the CPU and the thermal heuristics of
the system. Graceful shutdown of the OS at critical heat levels becomes possible as well. The following sections
describe the thermal objects available to the OS to control platform temperature. ACPI expects all temperatures
to be given in tenths of Kelvin.
The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one large
thermal zone, but an OEM can partition the system into several thermal zones if necessary.

12.1.1 Active, Passive, and Critical Policies
There are three primary cooling policies that the OS uses to control the thermal state of the hardware. The
policies are Active, Passive and Critical:
• Passive cooling: The OS reduces the power consumption of the system to reduce the thermal output of the

machine by slowing the processor clock. The _PSV control method is used to declare the temperature to
start passive cooling.

• Active cooling: The OS takes a direct action such as turning on a fan. The _ACx control methods declare
the temperatures to start different active cooling levels.

• Critical trip point:  This is the threshold temperature at which the OS performs an orderly, but critical, shut
down of the system.  The _CRT object declares the critical temperature at which the OS must perform a
critical shutdown.

When a thermal zone appears, the OS runs control methods to retrieve the three temperature points at which it
executes the cooling policy. When the OS receives a thermal SCI it will run the _TMP control method, which
returns the current temperature of the thermal zone. The OS checks the current temperature against the thermal
event temperatures. If _TMP is greater than or equal to _ACx then the OS will turn on the associated active
cooling device(s). If _TMP is greater than or equal to _PSV then the OS will perform CPU throttling.  Finally if
_TMP is greater than or equal to _CRT then the OS will shutdown the system.

An optimally designed system that uses several SCI events can notify the OS of thermal increase or decrease by
raising an interrupt every several degrees. This enables the OS to anticipate _ACx, PSV, or _CRT events and
incorporate heuristics to better manage the systems temperature.

The operating system can request that the hardware change the priority of active cooling vs passive cooling.

12.1.2 Dynamically Changing Cooling Temperatures
An OEM can reset _ACx and _PSV and notify the OS to reevaluate the control methods to retrieve the new
temperature settings. The following three causes are the primary uses for this thermal notification:
• When a user changes from one cooling mode to the other.
• When a swappable bay device is inserted or removed. A swappable bay is a slot that can accommodate

several different devices that have identical form factors, such as a CD-ROM drive, disk drive, and so on.
Many mobile PCs have this concept already in place.

• When the temperature reaches an _ACx or the _PSV policy settings
In each situation, the OEM-provided AML code must execute a Notify (thermal_zone, 0x80) statement to
request the OS to re-evaluate each policy temperature by running the _PSV and _ACx control methods.

12.1.2.1 Resetting Cooling Temperatures from the User Interface
When the user employs the UI to change from one cooling mode to the other, the following occurs:
1. The OS notifies the hardware of the new cooling mode by running the Set Cooling Policy  (_SCP) control

method.
2. When the hardware receives the notification, it can set a new temperature for both cooling policies and

notify the OS that the thermal zone policy temperatures have changed.
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3. The OS re-evaluates _PSV and _ACx.

12.1.2.2 Resetting Cooling Temperatures to Adjust to Bay Device Insertion or
Removal
The hardware can adjust the thermal zone temperature to accommodate the maximum operating temperature of a
bay device as necessary. For example,
1. Hardware detects that a device was inserted into or removed from the bay and resets the _PSV and/or _ACx

and then notifies the OS of the thermal and device insertion events.
2. The OS reenumerates the devices and reevaluates _PSV and _ACx.

12.1.2.3 Resetting Cooling Temperatures to Implement Hysteresis
An OEM can build hysteresis into platform thermal design by dynamically resetting cooling temperatures. For
example,
1. When the heat increases to the temperature designated by _ACx, the OS will turn on the associated active

cooling device and the hardware will reset the ACx value to a lower temperature.
2. The hardware will then run the Notify command and the OS will reevaluate the new temperatures. Because

of the lower _ACx value now, the fan will be turned off at a lower temperature than when turned on.
3. When the temperature hits the lower _ACx value, the OS will turn off the fan and reevaluate the control

methods when notified.

12.1.3 Hardware Thermal Events
An ACPI-compatible OS expects the hardware to generate a thermal event notification through the use of the
SCI.  When the OS receives the SCI event, it will run the _TMP control method to evaluate the current
temperature. Then the OS will compare the value to the cooling policy temperatures. If the temperature has
crossed over one of the three policy thresholds, then the OS will actively or passively cool (or stop cooling) the
system, or shutdown the system entirely.
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Figure 12-1   SCI Events
Both the number of SCI events to be implemented and the granularity of the temperature separation between
each SCI event is OEM-specific. However, it is important to note that since the OS can use heuristic knowledge
to help cool the system, the more events the OS receives the better understanding it will have of the system’s
thermal characteristic.

12.1.4 Active Cooling Strength
The Active cooling methods (_Acx) in conjunction with active cooling lists (_ALx), allows an OEM to use a
device that offers varying degrees of cooling capability or multiple cooling devices. The _ACx method
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designates the temperature at which the Active cooling is enabled or disabled (depending upon the direction in
which the temperature is changing). The _ALx method evaluates to a list of devices that actively cool the zone.
For example:
• If a standard single-speed fan is the Active cooling device, then the policy is represented by the temperature

to which _AC0 evaluates, and the fan is listed in _AL0.
• If the zone uses two independently-controlled single-speed fans to regulate the temperature, then _AC0 will

evaluate to the maximum cooling temperature using two fans, and _AC1 will evaluate to the standard
cooling temperature using one fan.

• If a zone has a single fan with a low speed and a high speed, the _AC0 will evaluate to the temperature
associated with running the fan at high-speed, and _AC1 will evaluate to the temperature associated with
running the fan at low speed. _AL0 and _AL1 will both point to different device objects associated with the
same physical fan, but control the fan at different speeds..

For ASL coding examples that illustrate these points, see section 12.4.

12.1.5 Passive Cooling Equation
Unlike the case for _ACx, during passive cooling the OS takes the initiative to actively monitor the temperature
in order to cool the platform. On an ACPI-compatible platform that properly implements CPU throttling, the
temperature transitions will be similar to the following figure.
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Figure 12-2   Temperature and CPU Performance Versus Time
For the OS to assess the optimum CPU performance change required to bring the temperature down, the
following equation must be incorporated into the OS.

∆P [%] = _TC1 * ( Tn  -  Tn-1 ) + _TC2 * (Tn - Tt)
where

Tn = current temperature
Tt = target temperature (_PSV)

The two coefficients _TC1 and _TC2 and the sampling period _TSP are hardware-dependent constants the
OEM must supply to the OS (for more information, see section 12.3). The object _TSP contains a time interval
that the OS uses to poll the hardware to sample the temperature. Whenever _TSP time has elapsed, the OS will
run _TMP to sample the current temperature (shown as Tn in the above equation). Then the OS will use the
sampled temperature and _PSV (which is the target temperature Tt) to evaluate the equation for ∆P. The
granularity of ∆P is determined by the CPU duty width of the system. (For more information about CPU
throttling, see section 4.7.2.6). A detailed explanation of this thermal feedback equation is beyond the scope of
this specification.
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12.1.6 Critical Shutdown
When the heat reaches the temperature indicated by _CRT, the OS must immediately shutdown the system. The
system must disable the power either after the temperature reaches some hardware-determined level above
_CRT or after a predetermined time has passed. Before disabling power, platform designers should incorporate
some time that allows the OS to run its critical shutdown operation. There is no requirement for a minimum
shutdown operation window that commences immediately after the temperature reaches _CRT.  This is because
• Heat might rise rapidly in some systems and slower on others, depending on casing design and

environmental factors.
• Shutdown can take several minutes on a server and only a few short seconds on a hand-held device.

Because of this indistinct discrepancy and the fact that a critical heat situation is a remarkably rare occurrence,
ACPI does not specify a target window for a safe shutdown. It is entirely up to the OEM to build in a safe buffer
that it sees fit for the target platform.

12.2 Other Implementation Of Thermal Controllable Devices
The ACPI thermal event model is flexible enough to accommodate control of almost any system device capable
of controlling heat. For example, if a mobile PC requires the battery charger to reduce the charging rate in order
to reduce heat it can be seamlessly implemented as an ACPI cooling device. This is done by associating the
charger as an Active cooling device and reporting to the OS target temperatures that will enable or disable the
power resource to the device.  Figure 12-3 illustrates the implementation. Because the example does not create
noise, this will be an implementation of silence mode.
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Figure 12-3  Other Thermal Control

12.3 Thermal Control Methods
Control methods and objects related to thermal management are listed in Table 12-1.

Table 12-1   Thermal Control Methods

Object Description
_ACx Returns Active trip point in tenths Kelvin
_ALx List of pointers to active cooling device objects
_CRT Returns critical trip point in tenths Kelvin
_PSL List of pointers to passive cooling device objects
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Object Description
_PSV Returns Passive trip point in tenths Kelvin
_SCP Sets user cooling policy (Active or Passive)
_TC1 Thermal constant for Passive cooling
_TC2 Thermal constant for Passive cooling
_TMP Returns current temperature in tenths Kelvin
_TSP Thermal sampling period for Passive cooling in tenths of seconds

12.3.1 _ACx
This control method returns the temperature at which the OS must start or stop Active cooling, where x is a
value between 0 and 9 that designates multiple active cooling levels of the thermal zone. If the Active cooling
device has one cooling level (that is, “on”) then that cooling level is named _AC0.  If the cooling device has two
levels of capability, such as a high fan speed and a low fan speed, then they are named _AC0 and _AC1
respectively. The smaller the value of x, the greater the cooling strength _ACx represents. In the above example,
_AC0 represents the greater level of cooling (the faster fan speed) and _AC1 represents the lesser level of
cooling (the slower fan speed). For every ACx method, there must be a matching ALx method.

Arguments:
None.

Result Code:
Temperature in tenths Kelvin.

The result code is an integer value which describes up to 0.1 precision in Kelvin. For example, 300.0K is
represented by the integer 3000.

12.3.2 _ALx
This object evaluates to a list of Active cooling devices to be turned on when the associated _ACx trip point is
exceeded.  For example, these devices could be fans.

12.3.3 _CRT
This control method returns the critical temperature at which the OS must shutdown the system.

Arguments:
None.

Result Code:
Temperature in tenths Kelvin.

The result is an integer value that describes up to 0.1 precision in Kelvin. For example, 300.0K is represented by
the integer 3000.

12.3.4 _PSL
This object evaluates to a list of processor objects to be used for Passive cooling.

12.3.5 _PSV
This control method returns the temperature at which the OS must activate CPU throttling.

Arguments:
None.

Result Code:
Temperature in tenths Kelvin.

The result code is an integer value that describes up to 0.1 precision in Kelvin.  For example,  300.0  Kelvin is
represented by 3000.
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12.3.6 _SCP
This control method notifies the hardware of the current user cooling mode setting. The hardware can use this as
a trigger to reassign _ACx and _PSV temperatures.  The operating system will automatically evaluate _ACx and
_PSV objects after executing _SCP.
Arguments:

0  -  Active
1  -  Passive

Result Code:
None.

12.3.7 _TC1
This is a thermal object that evaluates to the constant _ TC1 for use in the Passive cooling formula:

∆Performance [%]= _TC2 * ( Tn  - Tn-1 ) + _TC1 * (Tn. - Tt)

12.3.8 _TC2
This is a thermal object that evaluates to the constant _TC2 for use in the Passive cooling formula:

∆Performance [%]= _TC2 * ( Tn  - Tn-1 ) +  _TC1 *.(Tn. - Tt)

12.3.9 _TMP
This control method returns the thermal zone’s current operating temperature in Kelvin.

Argument:
None.

Result Code:
Temperature in tenths Kelvin.

The result is an integer value that describes up to 0.1 precision in Kelvin. For example, 300.0K is represented by
the integer 3000.

12.3.10 _TSP
This is an object that evaluates to a thermal sampling period used by  the OS to implement the Passive cooling
equation. This value, along with _TC1 and _TC2, will enable the OS to provide the proper hysteresis required
by the system to accomplish an effective passive cooling policy. The granularity of the sampling period is
0.1second. For example, if the sampling period is 30.0 seconds, then _TSP needs to report 300; if the sampling
period is 0.5 seconds, then it will report 5.   The OS can normalize the sampling over a longer period if
necessary.
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12.4 Thermal Block and Name Space Example for One Thermal Zone
Following is an example ASL encoding of a thermal zone. This is an example only.

Scope(\_PR) {
        Processor(
                CPU0,
                1,      //unique number for this processor
                0x110,  //System IO address of Pblk Registers
                0x06    //length in bytes of PBlk
                ) {}
} //end of \_PR scope

Scope(\_SB) {
Device(EC0) {

Name(_HID, EISAID("PNP0C09")) // ID for this EC
// current resource description for this EC
Name(_CRS, Buffer (){ 0x4B, 0x62, 0x00, 0x01, 0x4B,

0x66, 0x00, 0x01, 0x79, 0x00})
Name(_GPE, 0)  // GPE index for this EC

// create EC's region and field for thermal support
OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
Field(EC0, AnyAcc, Lock, Preserve) {

MODE, 1, // thermal policy (quiet/perform)
FAN, 1, // fan power (on/off)
, 5,
AC0, 8, // active cooling temp (fan high)
PSV, 8, // passive cooling temp
CRT, 8, // critical temp
}

// following is a method that the OS will schedule after
// it receives an SCI and queries the EC to receive value 7
Method(_Q07) {

Notify (\_TZ.THRM, 0x80)
} // end of Notify method

} // end of ECO device
} // end of scope

Scope(\_TZ) {
PowerResource(PFAN, 0, 0) {

Method(_STA) { Return (EC0.FAN) } // check power state
Method(_ON) { Store (One, EC0.FAN) } // turn on fan
Method(_OFF) { Store ( Zero, EC0.FAN) } // turn off fan

}
// Create FAN device object
Device (FAN) {

// Device ID for the FAN
Name(_HID, EISAID("PNP0C0B"))
// list power resource for the fan
Name(_PR0, Package(){PFAN})

}

// create a thermal zone
ThermalZone (THRM) {

Method(_TMP) { Return (EC0.TMP )} // get current temp
Method(_AC0) { Return ( EC0.AC0) } // fan high temp
Name(_AL0, Package(){FAN}) // fan is act cool dev
Method(_PSV) { Return ( EC0.PSV) } // passive cooling temp
Name(_PSL, Package (){\_PR.CPU0}) // cpu is pass cool dev
Method(_CRT) { Return ( EC0.CRT) } // get critical temp
Method(_SCP, 1) { Store (Arg1, EC0.MODE) } // set cooling mode
Name(_TC1, 4) // bogus example constant
Name(_TC2, 3) // bogus example constant
Name(_TSP, 60) // sample every 60 sec

}
}

12.5 Controlling Multiple Fans in a Thermal Zone
The following is an example encoding of a thermal block with a thermal zone and a single fan that has two
cooling speeds. This is an example only.
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Scope(\_PR) {
Processor(

CPU0,
1, //unique number for this processor
0x110, //System IO address of Pblk Registers
0x06 //length in bytes of PBlk
) {}

} //end of \_PR scope

Scope(\_SB) {
Device(EC0) {

Name(_HID, EISAID("PNP0C09")) // ID for this EC
// current resource description for this EC
Name(_CRS, Buffer (){ 0x4B, 0x62, 0x00, 0x01, 0x4B,

0x66, 0x00, 0x01, 0x79, 0x00})
Name(_GPE, 0) // GPE index for this EC

// create EC's region and field for thermal support
OperationRegion(EC0, EmbeddedControl, 0, 0xFF)

// following is a method that the OS will schedule after it
// receives an SCI and queries the EC to receive value 7
Method(_Q07) {

Notify (\_TZ.THM1, 0x80)
}

}
}

Scope(\_TZ) {
// fan cooling mode high/off - engaged at AC0 temp
PowerResource(FN10, 0, 0) {

Method(_STA) { Return (THM1.FAN0) } // check power state
Method(_ON) { Store (One, THM1.FAN0) } // turn on fan at high
Method(_OFF) { Store (Zero, THM1.FAN0) } // turn off fan

}

// fan cooling mode low/off - engaged at AC1 temp
PowerResource(FN11, 0, 0) {

Method(_STA) { Return (THM1.FAN1) } // check power state
Method(_ON) { Store (One, THM1.FAN1) } // turn on fan at low
Method(_OFF) { Store (Zero, THM1.FAN1) } // turn off fan

}

// Following is a single fan with two speeds.  This is represented
// by creating two logical fan devices.  When FN2 is turned on then
// the fan is at a low speed.  When FN1 and FN2 are both on then
// the fan is on high.
//
// Create FAN device object FN1
Device (FN1) {

// Device ID for the FAN
Name(_HID, EISAID("PNP0C0B"))
Name(_PR0, Package(){FN10, FN11})

}

// Create FAN device object FN2
Device (FN2) {

// Device ID for the FAN
Name(_HID, EISAID("PNP0C0B"))
Name(_PR0, Package(){FN10})

}

// create a thermal zone
ThermalZone (THM1) {

// field used by this thermal zone
Field(\EC0, AnyAcc, Lock, Preserve) {

MODE, 1, // thermal policy (quiet/perform)
FAN0, 1, // fan strength high/off
FAN1, 1, // fan strength low/off
, 5, // reserved
TMP, 8, // current temp
AC0, 8, // active cooling temp (high)
AC1, 8, // active cooling temp (low)
PSV, 8, // passive cooling temp
CRT, 8, // critical temp

}
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Method(_TMP) { Return (TMP )} // get current temp
Method(_AC0) { Return (AC0) } // fan high temp
Method(_AC1) { Return (AC1) } // fan low temp
Name(_AL0, Package() {FN1, FN23}) // active cooling (high)
Name(_AL1, Package() {FN2}) // active cooling (low)
Method(_PSV) { Return (PSV) } // passive cooling temp
Name(_PSL, Package() {\_PR.CPU0}) // cpu is pass cool dev
Method(_CRT) { Return (CRT) } // get crit. temp
Method(_SCP, 1) { Store (Arg1, MODE) } // set cooling mode
Name(_TC1, 1) // bogus example constant
Name(_TC2, 2) // bogus example constant
Name(_TSP, 150) // sample every 15 seconds

// END: declare objects for thermal zone
}

} // end of TZ
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13. ACPI Embedded Controller Interface Specification
ACPI defines a standard hardware and software communications interface between an OS driver  and an
embedded controller. This allows any OS to provide a standard driver that can directly communicate with
an embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers. This in turn enables the OEM to provide platform
features that the OS and applications can take advantage of.

ACPI also defines a standard hardware and software communications interface between an OS driver and an
SMBus Host Controller via an Embedded Controller.

The ACPI standard supports multiple embedded controllers in a system, each with its own resources. Each
embedded controller has a flat byte-addressable I/O space, currently defined as 256 bytes. Features
implemented in the embedded controller have an event “query” mechanism that allows feature hardware
implemented by the embedded controller to gain the attention of an OS driver or ASL/AML-code handler.
The interface has been specified to work on the most popular embedded controllers on the market today,
only requiring changes in the way the embedded controller is “wired” to the host interface.

Two interfaces are specified:
• A private interface, exclusively owned by the embedded controller driver.
• A shared interface, used by the embedded controller driver and some other driver.

The specification supports optional extensions to the interface that allow the driver to communicate to an
SMBus controller within the embedded controller (actual or emulated). This will allow standard drivers to
be created for SMBus devices that appear on the SMBus whether they are actual or emulated.

This interface is separate from the traditional PC keyboard controller. Some OEMs might choose to
implement the ACPI Embedded Controller Interface (ECI) within the same embedded controller as the
keyboard controller function, but the ECI requires its own unique host resources (interrupt event and access
registers).

This interface does support sharing the ECI with an inter-environment interface (such as SMI) and relies on
the ACPI defined “global lock” protocol. For information about the global lock interface, see section
5.2.6.1 of the ACPI specification. Both the shared and private EC interfaces are described in the following
sections.

The ECI has been designed such that a platform can use it in either the legacy or ACPI modes with minimal
changes between the two operating environments. This is to encourage standardization for this interface to
enable faster development of platforms as well as opening up features within these controllers to higher
levels of software.

13.1 Embedded Controller Interface Description
Embedded controllers are the general class of microcontrollers used to support OEM-specific
implementations. The ACPI specification supports embedded controllers in any platform design, as long as
the microcontroller conforms to one of the models described in this section. The embedded controller is a
unique feature in that it can perform complex low-level functions through a simple interface to the host
microprocessor(s).

Although there is a large variety of microcontrollers in the market today, the most commonly used
embedded controllers include a host interface that connects the embedded controller to the host data bus,
allowing bi-directional communications. A bi-directional interrupt scheme reduces the host processor
latency in communicating with the embedded controller.

Currently, the most common host interface architecture incorporated into microcontrollers is modeled after
the standard IA-PC architecture keyboard controller. This keyboard controller is accessed at 0x60 and 0x64
in system I/O space. Port 0x60 is termed the data register, and allows bi-directional data transfers to and
from the host and embedded controller. Port 0x64 is termed the command/status register; it returns port
status information upon a read, and generates a command sequence to the embedded controller upon a
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write. This same class of controllers also includes a second decode range that shares the same properties as
the keyboard interface by having a command/status register and a data register. The following diagram
graphically depicts this interface.
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Figure 13-1    Shared Interface
The diagram above depicts the general register model supported by the ACPI Embedded Controller
Interface.

The first method uses an embedded controller interface shared between the OS and the system management
code, which requires the global lock semaphore overhead to arbitrate ownership. The second method is a
dedicated embedded controller decode range for sole use by the OS driver.  The following diagram
illustrates the embedded controller architecture that includes a dedicated ACPI interface.
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Figure 13-2   Private Interface

The private interface allows the OS to communicate with the embedded controller without the additional
software overhead associated with using the global lock. Several common system configurations can
provide the additional embedded controller interfaces:
• Non-shared embedded controller - This will be the most common case where there is no need for the

system management handler to communicate with the embedded controller when the system transitions
to ACPI mode. The OS processes all normal types of system management events, and the system
management handler does not need to take any actions.

• Integrated keyboard controller and embedded controller - This provides three host interfaces as
described earlier by including the standard keyboard controller in an existing component (chip set, I/O
controller) and adding a discrete, standard embedded controller with two interfaces for system
management activities.

• Standard keyboard controller and embedded controller - This provides three host interfaces by
providing a keyboard controller as a distinct component, and two host interfaces are provided in the
embedded controller for system management activities.

• Two embedded controllers - This provides up to four host interfaces by using two embedded
controllers; one controller for system management activities providing up to two host interfaces, and
one controller for keyboard controller functions providing up to two host interfaces.
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• Embedded controller and no keyboard controller - Future platforms might provide keyboard
functionality through an entirely different mechanism, which would allow for two host interfaces in an
embedded controller for system management activities.

To handle the general embedded controller interface (as opposed to a dedicated interface) model, a method
is available to make the embedded controller a shareable resource between multiple tasks running under the
operating system’s control and the system management interrupt handler. This method, as described in this
section, requires several changes:
• Additional external hardware
• Embedded controller firmware changes
• System management interrupt handler firmware changes
• Operating software changes

Access to the shared embedded controller interface requires additional software to arbitrate between the
operating system’s use of the interface and the system management handler’s use of the interface. This is
done using the Global Lock as described in section 5.2.6.1.

This interface sharing protocol also requires embedded controller firmware changes, in order to ensure that
collisions do not occur at the interface. A collision could occur if a byte is placed in the system output
buffer and an interrupt is then generated. There is a small window of time when the data could be received
by the incorrect recipient. This problem is resolved by ensuring that the firmware in the embedded
controller does not place any data in the output buffer until it is requested by the OS or the system
management handler.

More detailed algorithms and descriptions are provided in the following sections.

13.2 Embedded Controller Register Descriptions
The embedded controller contains three registers at two address locations: EC_SC and EC_DATA. The
EC_SC, or Embedded Controller Status/Command register, acts as two registers: a status register for reads
to this port and a command register for writes to this port. The EC_DATA (Embedded Controller Data
register) acts as a port for transferring data between the host CPU and the embedded controller.

13.2.1 Embedded Controller Status, EC_SC (R)
This is a read-only register that indicates the current status of the embedded controller interface.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
IGN SMI_EVT SCI_EVT BURST CMD IGN IBF OBF

Where:

IGN: Ignored

SMI_EVT: 1=Indicates SMI event is pending (requesting SMI query).

0=No SMI events are pending.

SCI_EVT: 1=Indicates SCI event is pending (requesting SCI query).

0=No SCI events are pending.

BURST: 1=Controller is in burst mode for polled command processing.

0=Controller is in normal mode for interrupt-driven command processing.

CMD: 1=Byte in data register is a command byte (only used by controller).

0=Byte in data register is a data byte (only used by controller).

IBF: 1=Input buffer is full (data ready for embedded controller).

0=Input buffer is empty.
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OBF: 1=Output buffer is full (data ready for host).

0=Output buffer is empty.

The Output Buffer Full (OBF) flag is set when the embedded controller has written a byte of data into the
command or data port but the host has not yet read it. After the host reads the status byte and sees the OBF
flag set, the host reads the data port to get the byte of data that the embedded controller has written. After
the host reads the data byte, the OBF flag is cleared automatically by hardware. This signals the embedded
controller that the data has been read by the host and the embedded controller is free to write more data to
the host.

The Input Buffer Full (IBF) flag is set when the host has written a byte of data to the command or data port,
but the embedded controller has not yet read it. After the embedded controller reads the status byte and sees
the IBF flag set, the embedded controller reads the data port to get the byte of data that the host has written.
After the embedded controller reads the data byte, the IBF flag is automatically cleared by hardware. This is
the signal to the host that the data has been read by the embedded controller and that the host is free to write
more data to the embedded controller.

The SCI event (SCI_EVT) flag is set when the embedded controller has detected an internal event that
requires the operating system’s attention. The embedded controller sets this bit in the status register, and
generates an SCI to the OS. The OS needs this bit to differentiate command-complete SCIs from
notification SCIs. The OS uses the query command to request the cause of the SCI_EVT and take action.
For more information, see section 13.3)

The SMI event (SMI_EVT) flag is set when the embedded controller has detected an internal event that
requires the system management interrupt handler’s attention. The embedded controller sets this bit in the
status register before generating an SMI.

The Burst (BURST) flag indicates that the embedded controller has received the burst enable command
from the host, has halted normal processing, and is waiting for a series of commands to be sent from the
host. This allows the OS or system management handler to quickly read and write several bytes of data at a
time without the overhead of SCIs between the commands.

13.2.2 Embedded Controller Command, EC_SC (W)
This is a write-only register that allows commands to be issued to the embedded controller. Writes to this
port are latched in the input data register and the input buffer full flag is set in the status register. Writes to
this location also cause the command bit to be set in the status register. This allows the embedded controller
to differentiate the start of a command sequence from a data byte write operation.

13.2.3 Embedded Controller Data, EC_DATA (R/W)
This is a read/write register that allows additional command bytes to be issued to the embedded controller,
and allows the OS to read data returned by the embedded controller. Writes to this port by the host are
latched in the input data register, and the input buffer full flag is set in the status register. Reads from this
register return data from the output data register and clear the output buffer full flag in the status register.

13.3 Embedded Controller Command Set
The embedded controller command set allows the OS to communicate with the embedded controllers. ACPI
defines the commands and their byte encodings for use with the embedded controller that are shown in the
following table.

Table 13-1  Embedded Controller Commands

Embedded Controller Command Command Byte Encoding
Read Embedded Controller (RD_EC) 0x80
Write Embedded Controller (WR_EC) 0x81
Burst Enable Embedded Controller (BE_EC) 0x82
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Embedded Controller Command Command Byte Encoding
Burst Disable Embedded Controller (BD_EC) 0x83
Query Embedded Controller (QR_EC) 0x84

13.3.1 Read Embedded Controller, RD_EC (0x80)
This command byte allows the OS to read a byte in the address space of the embedded controller. This
command byte is reserved for exclusive use by the OS, and it indicates to the embedded controller to
generate SCIs in response to related transactions (that is, IBF=0 or OBF=1 in the EC Status Register),
rather than SMIs. This command consists of a command byte written to the Embedded Controller Command
register (EC_SC), followed by an address byte written to the Embedded Controller Data register
(EC_DATA). The embedded controller then returns the byte at the addressed location. The data is read at
the data port after the OBF flag is set.

13.3.2 Write Embedded Controller, WR_EC (0x81)
This command byte allows the OS to write a byte in the address space of the embedded controller. This
command byte is reserved for exclusive use by the OS, and it indicates to the embedded controller to
generate SCIs in response to related transactions (that is, IBF=0 or OBF=1 in the EC Status Register),
rather than SMIs. This command allows the OS to write a byte in the address space of the embedded
controller. It consists of a command byte written to the Embedded Controller Command register (EC_SC),
followed by an address byte written to the Embedded Controller Data register (EC_DATA), followed by a
data byte written to the Embedded Controller Data Register (EC_DATA); this is the data byte written at the
addressed location.

13.3.3 Burst Enable Embedded Controller, BE_EC (0x82)
This command byte allows the OS to request dedicated attention from the embedded controller and (except
for critical events) prevents the embedded controller from doing tasks other than receiving command and
data from the host processor (either the system management interrupt handler or the OS). This command is
an optimization that allows the host processor to issue several commands back to back, in order to reduce
latency at the embedded controller interface. When the controller is in the burst mode, it should transition to
the burst disable state if the host does not issue a command within the following guidelines:
• First Access - 400 microseconds
• Subsequent Accesses - 50 microseconds each
• Total Burst Time - 1 millisecond

In addition, the embedded controller can disengage the burst mode at any time to process a critical event. If
the embedded controller disables burst mode for any reason other than the burst disable command, it should
generate an SCI to the OS to indicate the change.

While in burst mode, the embedded controller follows these guidelines for the OS driver:
• SCIs are generated as normal, including IBF=0 and OBF=1.
• Accesses should be responded to within 50 microseconds.

Burst mode is entered in the following manner:
1. The OS driver writes the Burst Enable Embedded Controller, BE_EC (0x82) command byte and then

the Embedded Controller will prepare to enter the Burst mode. This includes processing any routine
activities such that it should be able to remain dedicated to the OS interface for ~ 1 ms.

2. The Embedded Controller sets the Burst bit of the Embedded Controller Status Register, puts the Burst
Acknowledge byte (0x90) into the SCI output buffer, sets the OBF bit, and generates an SCI to signal
the OS that it is in Burst mode.

Burst mode is exited the following manner:
1. The OS driver writes the Burst Disable Embedded Controller, BD_EC (0x83) command byte and then

the Embedded Controller will exit Burst mode by clearing the Burst bit in the Embedded Controller
Status register and generating an SCI signal (due to IBF=0).
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2. The Embedded Controller clears the Burst bit of the Embedded Controller Status Register.

13.3.4 Burst Disable Embedded Controller, BD_EC (0x83)
This command byte releases the embedded controller from a previous burst enable command and allows it
to resume normal processing. This command is sent by the OS or system management interrupt handler
after it has completed its entire queued command sequence to the embedded controller.

13.3.5 Query Embedded Controller, QR_EC (0x84)
The OS driver sends this command when the SCI_EVT flag in the EC_SC register is set. When the
embedded controller has detected a system event that must be communicated to the OS, it first sets the
SCI_EVT flag in the EC_SC register, generates an SCI, and then waits for the OS to send the query
(QR_EC) command. The OS detects the embedded controller SCI, sees the SCI_EVT flag set,  and sends
the query command to the embedded controller. Upon receipt of the QR_EC command byte, the embedded
controller places a notification byte with a value between 0-255, indicating the cause of the notification. The
notification byte indicates which interrupt handler operation should be executed by the OS to process the
embedded controller SCI. The query value of zero is reserved for a spurious query result and indicates “no
outstanding event.”

13.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT

This query command notification header is the special return code that indicates events with an SMBus
controller implemented within an embedded controller. These events include:
• Command completion
• Command error
• Alarm reception

The actual notification value is declared in the SMBus host controller device object in the ACPI name
space.

13.5 Embedded Controller Firmware
The embedded controller firmware must obey the following rules in order to be ACPI-compatible:
1. SMI Processing: Although it is not explicitly stated in the command specification section, a shared

embedded controller interface has a separate command set for communicating with each environment it
plans to support. In other words, the embedded controller knows which environment is generating the
command request, as well as which environment is to be notified upon an event detection, and can then
generate the correct interrupts and notification values. This implies that a system management handler
uses commands that parallel the functionality of all the commands for ACPI including query, read,
write, and any other implemented specific commands.

2. SCI/SMI Task Queuing: If the system design is sharing the interface between both a system
management interrupt handler and the OS, the embedded controller should always be prepared to queue
a notification if it receives a command. The embedded controller only sets the appropriate event flag in
the status (EC_SC) register if the controller has detected an event that should be communicated to the
operating system or system management handler. The embedded controller must be able to field
commands from either environment without loss of the notification event. At some later time, the
operating system or system management handler issues a query command to the embedded controller to
request the cause of the notification event.

3. Notification Management: The use of the embedded controller means using the query (QR_EC)
command to notify the OS of system events requiring action. If the embedded controller is shared with
the operating system, the SMI handler uses the SMI_EVT flag and an SMI query command (not
defined in this document) to receive the event notifications. The embedded controller doesn’t place
event notifications into the output buffer of a shared interface unless it receives a query command from
the OS or the system management interrupt handler.
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13.6 Interrupt Model
The EC Interrupt Model uses pulsed interrupts to speed the clearing process. The Interrupt is firmware
generated using an EC general-purpose output and has the waveform shown in Figure 13-3.  The embedded
controller SCI is always wired directly to a GPE input, and the OS driver treats this as an edge event (the
EC SCI GPE cannot be shared).

T
HOLD

Interrupt detected

Interrupt serviced
and cleared

Figure 13-3  EC Interrupt Waveform

13.6.1 Event Interrupt Model
The embedded controller must generate SCIs for the events listed in the following table.

Table 13-2   Events for which Embedded Controller Must Generate SCIs

Event Description
IBF=0 Signals that the embedded controller has read the last command or data from the

input buffer and the host is free to send more data.
OBF=1 Signals that the embedded controller has written a byte of data into the output

buffer and the host is free to read the returned data.
SCI_EVT=1 Signals that the embedded controller has detected an event that requires OS

attention. The OS should issue a query (QR_EC) command to find the cause of
the event.

13.6.2 Command Interrupt Model
The embedded controller must generate SCIs for commands as follows:
• READ COMMAND (Three Bytes)

Byte #1 (Command byte Header) Interrupt on IBF=0
Byte #2 (Address byte to read) No Interrupt
Byte #3 (Data read to host) Interrupt on OBF=1

• WRITE COMMAND (Three Bytes)
Byte #1 (Command byte Header) Interrupt on IBF=0
Byte #2 (Address byte to write) Interrupt on IBF=0
Byte #3 (Data to read ) Interrupt on IBF=0

• QUERY COMMAND (Two Bytes)
Byte #1 (Command byte Header) No Interrupt
Byte #2 (Query value to host) Interrupt on OBF=1

• BURST ENABLE COMMAND (Two Bytes)
Byte #1 (Command byte Header) No Interrupt
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Byte #2 (Burst acknowledge byte) Interrupt on OBF=1
 

• BURST DISABLE COMMAND (One Byte)
Byte #1 (Command byte Header) Interrupt on IBF=0

13.7 Embedded Controller Interfacing Algorithms

To initiate communications with the embedded controller, the OS or system management handler acquires
ownership of the interface. This ownership is acquired through the use of the Global Lock (described in
section 5.2.6.1), or is owned by default by the OS as a non-shared resource (and the Global Lock is not
required for accessibility).

After ownership is acquired, the protocol always consists of the passing of a command byte. The command
byte will indicate the type of action to be taken. Following the command byte, zero or more data bytes can
be exchanged in either direction. The data bytes are defined according to the command byte that is
transferred.

The embedded controller also has two status bits that indicate whether the registers have been read. This is
used to ensure that the host or embedded controller has received data from the embedded controller or host.
When the host writes data to the command or data register of the embedded controller, the input buffer flag
(IBF) in the status register is set within 1 microsecond. When the embedded controller reads this data from
the input buffer, the input buffer flag is reset. When the embedded controller writes data into the output
buffer, the output buffer flag (OBF) in the status register is set. When the host processor reads this data
from the output buffer, the output buffer flag is reset.

13.8 Embedded Controller Description Information
Certain aspects of the embedded controller’s operation have OEM-definable values associated with them.
The following is a list of values that are defined in the software layers of the ACPI specification:
• Status flag indicating whether the interface requires the use of the global lock.
• Bit position of embedded controller interrupt in general-purpose status register.
• Decode address for command/status register.
• Decode address for data register.
• Base address and query value of any SMBus controller.

For implementation details of the above listed information, see sections 13.11 and 13.12.

13.9 SMBus Host Controller Interface via Embedded Controller
This section describes the System Management Bus (referred to as SMBus) Host Interface, which is a
mechanism to allow the OS to address components on the SMBus. SMBus address space is one of the
generic address spaces defined in the ACPI specification, and this section specifies how to implement a host
controller interface in order to have the OS communicate directly with SMBus devices.

SMBus is a two-wire interface based upon the I²C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration. For more information, refer to the complete set of
SMBus Specifications published by Intel Corporation.

The SMBus host interface provides a method of communicating on the SMBus through a block of registers
that reside in embedded controller space. Some SMBus host controller interfaces have special requirements
that certain SMBus commands are filtered by the host controller. For example,  to prevent an errant
application or virus from potentially damaging the battery subsystem. This is most easily accomplished by
providing the host interface controller through an embedded controller, because the embedded controller
can easily filter out the potentially problematic commands.

The SMBus host controller interface allows the host processor (under control of the OS) to manage devices
on the SMBus. Among typical devices that reside on the SMBus are smart batteries, smart chargers,
contrast/backlight control, and temperature sensors.
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This section specifies a standard set of registers an ACPI-compatible OS can use to communicate with
SMBus devices. Any SMBus host interface that does not comply with this standard can be communicated
with using control methods (as described in section 5).

13.9.1 Register Description
The SMBus host interface is a flat array of registers that are arranged sequentially in address space.

13.9.1.1 Status Register, SMB_STS

This register indicates general status on the SMBus. This includes SMBus host controller command
completion status, alarm received status, and error detection status (the error codes are defined later in this
section). This register is cleared to zeroes (except for the ALRM bit) whenever a new command is issued
using a write to the protocol (SMB_PRTCL) register. This register is always written with the error code
before clearing the protocol register. The SMBus host controller query event (that is, an SMBus host
controller interrupt) is raised after the clearing of the protocol register.

NOTE: The OS driver must ensure the ALRM bit is cleared after it has been serviced by writing ‘00’ to the
SMB_STS register.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
DONE ALRM RES STATUS

Where:

DONE: Indicates the last command has completed and no error.

ALRM: Indicates an SMBus alarm message has been received.

RES: Reserved.

STATUS: Indicates SMBus communication status for one of the reasons listed in
the following table.

Table 13-3   SMBus Status Codes

Status
Code

Name Description

00h SMBus OK Indicates the transaction has been successfully completed.
07h SMBus Unknown Failure Indicates failure because of an unknown SMBus error.
10h SMBus Device Address Not

Acknowledged
Indicates the transaction failed because the slave device
address was not acknowledged.

11h SMBus Device Error
Detected

Indicates the transaction failed because the slave device
signaled an error condition.

12h SMBus Device Command
Access Denied

Indicates the transaction failed because the SMBus host does
not allow the specific command for the device being
addressed.  For example, the SMBus host might not allow a
caller to adjust the Smart Battery Charger's output.

13h SMBus Unknown Error Indicates the transaction failed because the SMBus host
encountered an unknown error.

17h SMBus Device Access
Denied

Indicates the transaction failed because the SMBus host does
not allow access to the device addressed. For example, the
SMBus host might not allow a caller to directly communicate
with an SMBus device that controls the system's power
planes.
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Status
Code

Name Description

18h SMBus Timeout Indicates the transaction failed because the SMBus host
detected a timeout on the bus.

19h SMBus Host Unsupported
Protocol

Indicates the transaction failed because the SMBus host does
not support the requested protocol.

1Ah SMBus Busy Indicates that the transaction failed because the SMBus host
reports that the SMBus is presently busy with some other
transaction.  For example, the Smart Battery might be
sending charging information to the Smart Battery Charger.

All other error codes are reserved

13.9.1.2 Protocol Register, SMB_PRTCL

This register determines the type of SMBus transaction generated on the SMBus. In addition to indicating
the protocol type to the SMBus host controller, a write to this register initiates the transaction on the
SMBus.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
PROTOCOL

Where:

PROTOCOL: 0x00=Controller Not In Use

0x01=Reserved

0x02=Write Quick Command

0x03=Read Quick Command

0x04=Send Byte

0x05=Receive Byte

0x06=Write Byte

0x07=Read Byte

0x08=Write Word

0x09=Read Word

0x0A=Write Block

0x0B=Read Block

0x0C=Process Call

When the OS initiates a new command such as write to the SMB_PRTCL register, the SMBus Controller
first updates the SMB_STS register and then clears the SMB_PRTCL register. After the SMB_PRTCL
register is cleared, the host controller query value is raised.

13.9.1.3 Address Register, SMB_ADDR
This register contains the 7-bit address to be generated on the SMBus. This is the first byte to be sent on the
SMBus for all of the different protocols.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
ADDRESS (A6:A0) RES
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Where:

RES: Reserved.

ADDRESS: 7-bit SMBus address. This address is not zero aligned (i.e. it is only a 7-bit address
(A6:A0) that is aligned from bit 1-7).

13.9.1.4 Command Register, SMB_CMD
This register contains the command byte that will be sent to the target device on the SMBus and is used for
the following protocols: send byte, write byte, write word, read byte, read word, process call, block read
and block write. It is not used for the  quick commands or the receive byte protocol, and as such, its value is
a “don’t care” for those commands.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
COMMAND

Where:

COMMAND: Command byte to be sent to SMBus device.

13.9.1.5 Data Register Array, SMB_DATA[i], i=0-31
This bank of registers contains the remaining bytes to be sent or received in any of the different protocols
that can be run on the SMBus. The SMB_DATA[i] registers are defined on a per-protocol basis and, as
such, provide efficient use of register space.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
DATA

Where:

DATA: One byte of data to be sent or received (depending upon protocol).

13.9.1.6 Block Count Register, SMB_BCNT
This bank of registers contains the remaining bytes to be sent or received in any of the different protocols
that can be run on the SMBus. The SMB_DATA[i] registers are defined on a per-protocol basis and, as
such, provide efficient use of register space.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
RES BCNT

Where:

RES: Reserved

BCNT: Block Count for Block Read and Block Write Protocols

13.9.1.7 Alarm Address Register, SMB_ALRM_ADDR
This register contains the address of an alarm message received by the host controller, at slave address 0x8,
from the SMBus master that initiated the alarm. The address indicates the slave address of the device on the
SMBus that initiated the alarm message. The status of the alarm message is contained in the
SMB_ALRM_DATAx registers. Once an alarm message has been received, the SMBus host controller will
not receive additional alarm messages until the ALRM status bit is cleared.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
ADDRESS (A6:A0) RES
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Where:

RES: Reserved

ADDRESS: Slave address (A6:A0) of the SMBus device that initiated the SMBus alarm message.

13.9.1.8 Alarm Data Registers, SMB_ALRM_DATA[0], SMB_ALRM_DATA[1]
These registers contain the two data bytes of an alarm message received by the host controller, at slave
address 0x8, from the SMBus master that initiated the alarm. These data bytes indicate the specific reason
for the alarm message, such that the OS can take immediate corrective actions. Once an alarm message has
been received, the SMBus host controller will not receive additional alarm messages until the ALRM status
bit is cleared.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
DATA (D7:D0)

Where:

DATA: Data byte received in alarm message.

The alarm address and alarm data registers are not read by the OS driver until the alarm status bit is set. The
OS driver then reads the three bytes, and clears the alarm status bit to indicate that the alarm registers are
now available for the next event.

13.9.2 Protocol Description
This section describes how to initiate the different protocols on the SMBus through the interface described
in the section 13.9.1. The registers should all be written with the appropriate values before writing the
protocol value that starts the SMBus transaction. All transactions can be completed in one pass.

13.9.2.1 Write Quick
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x02 to initiate quick write  protocol.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.2 Read Quick
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x03 to initiate quick read protocol.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.3 Send Byte
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.
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SMB_PRTCL: Write 0x04 to initiate send byte protocol.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.4 Receive Byte
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x05 to initiate receive byte protocol.

Data Returned:

SMB_DATA[0]: Data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.5 Write Byte
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Data byte to be sent.

SMB_PRTCL: Write 0x06 to initiate write byte protocol.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.6 Read Byte
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x07 to initiate read byte protocol.

Data Returned:

SMB_DATA[0]: Data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.7 Write Word
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.
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SMB_DATA[0]: Low data byte to be sent.

SMB_DATA[1]: High data byte to be sent.

SMB_PRTCL: Write 0x08 to initiate write word protocol.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.8 Read Word
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x09 to initiate read word protocol.

Data Returned:

SMB_DATA[0]: Low data byte received.

SMB_DATA[1]: High data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.9 Write Block
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0-31]: Data bytes to write (1-32).

SMB_BCNT: Number of data bytes (1-32) to be sent.

SMB_PRTCL: Write 0x0A to initiate write block protocol.

Data Returned:

SMB_PRTCL: 0x00 to indicate command completion.

SMB_STS: Status code for transaction.

13.9.2.10 Read Block
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x0B to initiate read block protocol.

Data Returned:

SMB_BCNT: Number of data bytes (1-32) received.

SMB_DATA[0:3]: Data bytes received (1-32).
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SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.11 Process Call
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Low data byte to be sent.

SMB_DATA[1]: High data byte to be sent.

SMB_PRTCL: Write 0x0C to initiate process call protocol.

Data Returned:

SMB_DATA[0]: Low data byte received.

SMB_DATA[1]: High data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.3 SMBus Register Set
The register set for the SMBus host controller has the following format. All registers are eight bit.

Table 13-4   SMB EC Interface

LOCATION REGISTER NAME DESCRIPTION
BASE+0 SMB_PRTCL Protocol register.
BASE+1 SMB_STS Status register.
BASE+2 SMB_ADDR Address register.
BASE+3 SMB_CMD Command register.
BASE+4 SMB_DATA[0] Data register zero.
BASE+5 SMB_DATA[1] Data register one.
BASE+6 SMB_DATA[2] Data register two.
BASE+7 SMB_DATA[3] Data register three.
BASE+8 SMB_DATA[4] Data register four.
BASE+9 SMB_DATA[5] Data register five.
BASE+10 SMB_DATA[6] Data register six.
BASE+11 SMB_DATA[7] Data register seven.
BASE+12 SMB_DATA[8] Data register eight.
BASE+13 SMB_DATA[9] Data register nine.
BASE+14 SMB_DATA[10] Data register ten.
BASE+15 SMB_DATA[11] Data register eleven.
BASE+16 SMB_DATA[12] Data register twelve.
BASE+17 SMB_DATA[13] Data register thirteen.
BASE+18 SMB_DATA[14] Data register fourteen.
BASE+19 SMB_DATA[15] Data register fifteen.
BASE+20 SMB_DATA[16] Data register sixteen.
BASE+21 SMB_DATA[17] Data register seventeen.
BASE+22 SMB_DATA[18] Data register eighteen.
BASE+23 SMB_DATA[19] Data register nineteen.
BASE+24 SMB_DATA[20] Data register twenty.



ACPI Embedded Controller Interface Specification 13-197

Intel/Microsoft/Toshiba

LOCATION REGISTER NAME DESCRIPTION
BASE+25 SMB_DATA[21] Data register twenty-one.
BASE+26 SMB_DATA[22] Data register twenty-two.
BASE+27 SMB_DATA[23] Data register twenty-three.
BASE+28 SMB_DATA[24] Data register twenty-four.
BASE+29 SMB_DATA[25] Data register twenty-five.
BASE+30 SMB_DATA[26] Data register twenty-six.
BASE+31 SMB_DATA[27] Data register twenty-seven.
BASE+32 SMB_DATA[28] Data register twenty-eight.
BASE+33 SMB_DATA[29] Data register twenty-nine.
BASE+34 SMB_DATA[30] Data register thirty.
BASE+35 SMB_DATA[31] Data register thirty-one.
BASE+36 SMB_BCNT Block Count Register
BASE+37 SMB_ALRM_ADDR Alarm address.
BASE+38 SMB_ALRM_DATA[0] Alarm data register zero.
BASE+39 SMB_ALRM_DATA[1] Alarm data register one.

13.10 SMBus Devices
The embedded controller interface provides the system with a standard method to access devices on the
SMBus. It does not define the data and/or access protocol(s) used by any particular SMBus device. Further,
the embedded controller can (and probably will) serve as a gatekeeper to prevent accidental or malicious
access to devices on the SMBus.

SMBus devices are defined by their address and a specification that describes the data and the protocol used
to access that data.  For example, the Smart Battery System devices are defined by a series of specifications
including:
• Smart Battery Data specification
• Smart Battery Charger specification
• Smart Battery Selector specification

The embedded controller can also be used to emulate (in part or totally) any SMBus device.

13.10.1 SMBus Device Access Restrictions
In some cases, the embedded controller interface will not allow access to a particular SMBus device. Some
SMBus devices can and do communicate directly between themselves. Unexpected accesses can interfere
with their normal operation and cause unpredictable results.

13.10.2 SMBus Device Command Access Restriction
There are cases where part of an SMBus device’s commands are public while others are private. Extraneous
attempts to access these commands might cause interference with the SMBus device’s normal operation.

The Smart Battery and the Smart Battery Charger are a good example of devices that should not have their
entire command set exposed. The Smart Battery commands the Smart Battery Charger to supply a specific
charging voltage and charging current. Attempts by the anyone to alter these values can cause damage to the
battery or the mobile system. To protect the system’s integrity, the embedded controller interface can
restrict access to these commands by returning one of the following error codes: Device Command Access
Denied (0x12) or Device Access Denied (0x17).

13.11 Defining an Embedded Controller Device in ACPI Name Space
An embedded controller device is created using the named device object. The embedded controller’s device
object requires the following elements:
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Table 13-5   Embedded Controller Device Object Control Methods

Object Description
_CRS Named object that returns the Embedded Controller’s current resource settings. Embedded

Controller’s are considered static resources, hence only return their defined resources. The
embedded controller resides only in system I/O or memory space.  The first address region
returned is the data port, and the second address region returned is the status/command port for
the embedded controller.  _CRS is a standard device configuration control method defined in
section 6.2.1.

_HID Named object that provides the Embedded Controller’s Plug and Play identifier. This value is
be set to PNP0A09. _HID is a standard device configuration control method defined in section
6.1.3.

_GPE Named object that returns what SCI interrupt within the GPx_STS register (bit assignment).
This control method is specific to the embedded controller.

13.11.1 Example EC Definition ASL Code
Example ASL code that defines an embedded controller device is shown below:

Device(EC0) {
// PnP ID
Name(_HID, EISAID(“PNP0C09”))
// Returns the “Current Resources” of EC
Name(_CRS,

ResourceTemplate(){ // port 0x62 and 0x66
IO(Decode16, 0x62, 0x62, 0, 1),
IO(Decode16, 0x66, 0x66, 0, 1)
}

)
// Define that the EC SCI is bit 0 of the GP_STS register
Name(_GPE, 0)

OperationRegion(ECOR, EmbeddedControl, 0, 0xFF)
Field(ECOR, ByteAcc, Lock, Preserve) {

// Field definitions go here
}

}

13.12 Defining an EC SMBus Host Controller in ACPI Name Space
An embedded controller device is created using the named device object. The embedded controller’s device
object requires the following elements:

Table 13-6  EC SMBus Host Controller Device Objects

Object Description
_HID Named object that provides the Embedded Controller’s Plug and Play identifier. This value is

be set to ACPI0001. _HID is a standard device configuration control method defined in section
6.1.

_EC Named object that evaluates to a WORD that defines the SMBus attributes needed by the
SMBus driver. _EC is the Embedded Controller Offset Query Control Method. The most
significant byte is the address offset in embedded controller space of the SMBus controller; the
least significant byte is the query value for all SMBus events.

13.12.1 Example EC SMBus Host Controller ASL-Code
Example ASL-code that defines an SMBus Host Controller from within an embedded controller device is
shown below:
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Device(EC0) {
Name(_HID, EISAID("PNP0C09"))

        Name(_CRS,
                ResourceTemplate(){              // port 0x62 and 0x66
                        IO(Decode16, 0x62, 0x62, 0, 1),  // Status port
                        IO(Decode16, 0x66, 0x66, 0, 1)   // command port
                        }
             )

Name(_GPE, 0)

Device (SMB1) {
Name (_HID, "ACPI0001")

               Name(_EC, 0x8030)                   // EC offset, Query
               OperationRegion(PHO1, SMBus, 0x51, 0x1)

Device(DEVA){
Name(_ADR, 0x51)
Field(PHO1, ByteAcc, NoLock, Preserve) {

TST0, 1,
TST1, 1,
NULL, 5,
TST7, 1,
}

} // end of DEVA
} // end of SMB1

Device (SMB2) {
Name (_HID, "ACPI0001")

                Name(_EC, 0x9031)               // EC offset, Query
                OperationRegion(PHO1, SMBus, 0x62, 0x1)
                OperationRegion(PHO2, SMBus, 0x50, 0x2)

Device(DEVB){
Name(_ADR, 0x62)

                        Field(PHO1, SMBQuickAcc, NoLock, Preserve) {
                              TSTC,   8
                              }               // end of DEVB

Device(EPRM){
Name(_ADR, 0x50)

                        Field(PHO2, AnyAcc, NoLock, Preserve){
                                FLD1, 256,
                                FLD2, 8,
                                FLD3, 16,
                                FLD4, 8,
                                FLD5, 224
                                }

} // end of EPRM
} // end of SMB2

} // end of EC
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14. Query System Address Map
This section explains the special INT 15 call that Intel and Microsoft developed for use in IA-PC based systems.
The call supplies the operating system with a clean memory map indicating address ranges that are reserved and
ranges that are available in the motherboard.

14.1 INT 15H, E820H - Query System Address Map
This call can be used in real mode only.

This call returns a memory map of all the installed RAM, and of physical memory ranges reserved by the BIOS.
The address map is returned by making successive calls to this API, each returning one run of physical address
information.  Each run has a type that dictates how this run of physical address range is to be treated by the
operating system.

If the information returned from E820 in some way differs from INT-15 88 or INT-15 E801,  the information
returned from E820 supersedes the information returned from INT-15 88 or INT-15 E801.  This replacement
allows the BIOS to return any information that it requires from INT-15 88 or INT-15 E801 for compatibility
reasons. For compatibility reasons, if E820 returns any AddressRangeACPI or AddressRangeNVS memory
ranges below 16Mb, the INT-15 88 and INT-15 E801 functions must return the top of memory below the
AddressRangeACPI and AddressRangeNVS memory ranges.

Table 14-1  Input

EAX Function Code E820h
EBX Continuation Contains the continuation value to get the next run of physical memory.  This

is the value returned by a previous call to this routine.  If this is the first call,
EBX must contain zero.

ES:DI Buffer Pointer Pointer to an Address Range Descriptor structure that the BIOS fills in.
ECX Buffer Size The length in bytes of the structure passed to the BIOS.  The BIOS fills in

the number of bytes of the structure indicated in the ECX register, maximum,
or whatever amount of the structure the BIOS implements.  The minimum
size that must be supported by both the BIOS and the caller is 20 bytes.
Future implementations might extend this structure.

EDX Signature 'SMAP'   Used by the BIOS to verify the caller is requesting the system map
information to be returned in ES:DI.

Table 14-2  Output

CF Carry Flag Non-Carry - Indicates No Error
EAX Signature 'SMAP' - Signature to verify correct BIOS revision.
ES:DI Buffer Pointer Returned Address Range Descriptor pointer.  Same value as on input.
ECX Buffer Size Number of bytes returned by the BIOS in the address range descriptor.  The

minimum size structure returned by the BIOS is 20 bytes.
EBX Continuation Contains the continuation value to get the next address descriptor.  The

actual significance of the continuation value is up to the discretion of the
BIOS.  The caller must pass the continuation value unchanged  as input to
the next iteration of the E820 call in order to get the next Address Range
Descriptor.  A return value of zero means that this is the last descriptor.
NOTE:  the BIOS can also indicate  that the last descriptor has already been
returned during previous iterations by returning a carry. The caller will
ignore any other information returned  by the BIOS when the carry flag is
set.

Table 14-3  Address Range Descriptor Structure

Offset in Bytes Name Description
0 BaseAddrLow Low 32 Bits of Base Address
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4 BaseAddrHigh High 32 Bits of Base Address
8 LengthLow Low 32 Bits of Length in Bytes
12 LengthHigh High 32 Bits of Length in Bytes
16 Type Address type of this range

The BaseAddrLow and BaseAddrHigh together are the 64-bit base address of this range.  The base address is the
physical address of the start of the range being specified.

The LengthLow and LengthHigh together are the 64-bit length of this range.  The length is the physical
contiguous length in bytes of a range being specified.

The Type field describes the usage of the described address range as defined in the following table.

Table 14-4   Address Ranges in the Type Field

Value Mnemonic Description
1 AddressRangeMemory This run is available RAM usable by the operating system.
2 AddressRangeReserved This run of addresses is in use or reserved by the system and must

not be used by the operating system.
3 AddressRangeACPI ACPI Reclaim Memory.  This run is available RAM usable by the

operating system after it reads the ACPI tables.
4 AddressRangeNVS ACPI NVS Memory.  This run of addresses is in use or reserve by

the system and must not be used by the operating system.  This
range is required to be saved and restored across an NVS sleep.

Other Undefined Undefined - Reserved for future use.  Any range of this type must
be treated by the OS as if the type returned was
AddressRangeReserved.

The BIOS can use the AddressRangeReserved address range type to block out various addresses as not suitable
for use by a programmable device.   Some of the reasons a BIOS would do this are:
• The address range contains system ROM.
• The address range contains RAM in use by the ROM.
• The address range is in use by a memory-mapped system device.
• The address range is, for whatever reason, unsuitable for a standard device to use as a device memory

space.

14.2 Assumptions and Limitations
• The BIOS returns address ranges describing base board memory and ISA or PCI memory that is contiguous

with that base board memory.
• The BIOS does not return a range description for the memory mapping of PCI devices, ISA Option ROMs,

and ISA Plug and Play cards because the operating system has mechanisms available to detect them.
• The BIOS returns chip set-defined address holes that are not being used by devices as reserved.
• Address ranges defined for base board memory-mapped I/O devices, such as APICs, are  returned as

reserved.
• All occurrences of the system BIOS are mapped as reserved, including the areas below 1 MB, at 16 MB (if

present), and at end of the 4-GB address space.
• Standard PC address ranges are not reported.  Example video memory at A0000  to BFFFF physical are not

described by this function.  The range from E0000  to EFFFF is specific to the base board and is reported as
it applies to that base board.

• All of lower memory is reported as normal memory.  The operating system must handle standard RAM
locations that are reserved for specific uses, such as the interrupt vector table (0:0) and the BIOS data area
(40:0).
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14.3 Example Address Map
This sample address map (for an Intel processor-based system) describes a machine which has 128 MB of RAM,
640K of base memory and  127 MB of extended memory. The base memory has 639K available for the user and
1K for an extended BIOS data area. A 4-MB Linear Frame Buffer (LFB) is based at 12 MB. The memory hole
created by the chip set is from 8 MB to 16 MB.  Memory-mapped APIC devices are in the system. The I/O Unit
is at FEC00000 and the Local Unit is at FEE00000. The system BIOS is remapped to 1 GB-64K.

The 639K endpoint of the first memory range is also the base memory size reported in the BIOS data segment at
40:13. The following table shows the memory map of a typical system.

Table 14-5   Sample Memory Map

Base (Hex) Length Type Description
0000 0000 639K AddressRangeMemory Available Base memory - typically the same value

as is returned using the INT 12 function.
0009 FC00 1K AddressRangeReserved Memory reserved for use by the BIOS(s).  This

area typically includes the Extended BIOS data
area.

000F 0000 64K AddressRangeReserved System BIOS
0010 0000 7MB AddressRangeMemory Extended memory, which is not limited to the

64-MB address range.
0080 0000 4MB AddressRangeReserved Chip set memory hole required to support the LFB

mapping at 12 MB.
0100 0000 120MB AddressRangeMemory Base board RAM relocated above a chip set

memory hole.
FEC0 0000 4K AddressRangeReserved I/O APIC memory mapped I/O at FEC00000.
FEE0 0000 4K AddressRangeReserved Local APIC memory mapped I/O at FEE00000.
FFFF 0000 64K AddressRangeReserved Remapped System BIOS at end of address space.

14.4 Sample Operating System Usage
The following code segment illustrates the algorithm to be used when calling the Query System Address Map
function. It is an implementation example and uses non-standard mechanisms.



Query System Address Map 14-203

9:50 AM                                                                                                        Intel/Microsoft/Toshiba14-203

E820Present = FALSE;
Reg.ebx = 0;
do {

Reg.eax = 0xE820;
Reg.es  = SEGMENT (&Descriptor);
Reg.di  = OFFSET  (&Descriptor);
Reg.ecx = sizeof  (Descriptor);
Reg.edx = 'SMAP';

_int( 15, regs );

if ((Regs.eflags & EFLAG_CARRY)  ||  Regs.eax != 'SMAP') {
break;

}

if (Regs.ecx < 20  ||  Reg.ecx > sizeof (Descriptor) ) {
// bug in bios - all returned descriptors must be
// at least 20 bytes long, and cannot be larger then
// the input buffer.

break;
}

E820Present = TRUE;
.
.
.

Add address range Descriptor.BaseAddress through
Descriptor.BaseAddress + Descriptor.Length
as type Descriptor.Type

.

.

.

} while (Regs.ebx != 0);

if (!E820Present) {
.
.
.

call INT-15 88 and/or INT-15 E801 to obtain old style
memory information

.

.

.
}
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15. ACPI Source Language (ASL) Reference
This section formally defines the ACPI Control Method Source Language (ASL). ASL is a source language for
writing ACPI control methods. OEMs and BIOS developers write control methods in ASL and then use a
translator tool (compiler) to generate ACPI Machine Language (AML) versions of the control methods. For a
formal definition of AML, see the ACPI Control Method Machine Language (AML) Specification, section 16.

AML and ASL are different languages though they are closely related.

Every ACPI-compatible OSes must support AML. A given user can define some arbitrary source language (to
replace ASL) and write a tool to translate it to AML.

An OEM or BIOS vendor needs to write ASL and be able to single step AML for debugging. (Debuggers and
similar tools are expected to be AML level tools, not source level tools.) An ASL translator implementer must
understand how to read ASL and generate AML. An AML interpreter author must understand how to execute
AML.

This section has two parts:
• The ASL grammar, which is the formal ASL specification and also serves as a quick reference.
• A full ASL reference, which repeats the ASL term syntax and adds information about the semantics of the

language.

15.1 ASL Language Grammar
The purpose of this section is to state unambiguously the grammar rules used by the syntax checker of an ASL
compiler.

ASL statements declare objects.  Each object has three parts, two of which can be null.

Object := ObjectType  FixedList  VariableList

FixedList refers to a list, of known length, that supplies data that all instances of a given ObjectType must
have. A fixed list is written as ( a , b , c , … ) where the number of arguments depends on the specific
ObjectType, and some elements can be nested objects, that is (a, b, (q, r, s, t), d). Arguments to a FixedList
can have default values, in which case they can be skipped.  Thus, (a,,c) will cause the default value for the
second argument to be used. Some ObjectTypes can have a null FixedList, which is simply omitted. Trailing
arguments of some object types can be left out of a fixed list, in which case the default value is used.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent.  It is
written as { x, y, z, aa, bb, cc } where any argument can be a nested object. ObjectType determines what terms
are legal elements of the VariableList . Some ObjectTypes may have a null variable list, which is simply
omitted.

Other rules for writing ASL statements are the following:
• Multiple blanks are the same as one.  Blank, (, ), ‘,’ and newline are all token separators.
• // marks the beginning of a comment, which continues from the // to the end of the line.
• /* marks the beginning of a comment, which continues from the /* to the next */.
• “”  surround an ASCII string.
• Numeric constants can be written in two ways: ordinary decimal, or hexadecimal, using the notation 0xdd
• nothing indicates  an empty item. For example { nothing } is equivalent to {}

15.1.1 ASL Grammar Notation
The notation used to express the ASL grammar is specified in the following table.
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Table 15-1  ASL Grammar Notation

Notation Convention Description Example
Term := Term Term … The term to the left of := can be

expanded into the sequence of terms
on the right.

aterm := bterm cterm means that
aterm can be expanded into the two-
term sequence of bterm followed by
cterm.

Angle brackets (< > ) Used to group items. <a b> | <c d> means either
a b or c d.

Bar symbol ( | ) Separates alternatives. aterm := bterm | <cterm dterm>
means the following constructs are
possible:
   bterm
   cterm dterm
aterm := <bterm | cterm> dterm
means the following constructs are
possible:
   bterm dterm
   cterm dterm

Term Term Term Terms separated from each other by
spaces form an ordered list.

See the examples for ellipses and
square brackets.

Square brackets ([ ] ) Used to indicate optional items. Term [Term . . .]
means an ordered list of one or more
terms.

Ellipses (. . . ) Indicates continuation of a list of
terms of the same type.

,Arg …
means one or more Arg terms,
separated by commas.

Word in bold. Denotes the name of a term in the
ASL grammar, representing any
instance of such a term.

In the following ASL term
definition:
ThermalZone (ZoneName)
                      {NamedObjectList}
the item in bold is the name of the
term.

Word in italics Names of arguments to objects that
are replaced for a given instance.

In the following ASL term
definition:
ThermalZone (ZoneName)
                      {NamedObjectList}
the italicized item is an argument.
The item that is not bolded or
italicized is defined elsewhere in the
ASL grammar.

Single quotes (‘ ’) Indicate constant characters. ‘A’
0xdd Refers to a byte value expressed as 2

hexadecimal digits.
0x21 means a value of hexadecimal
21, or decimal 37. Note that a value
expressed in hexadecimal must start
with a leading zero (0).

Dash character ( - ) Indicates a range. 1-9 means a single digit in the range
1 to 9 inclusive.
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15.1.2 ASL Names
leadnamechar := ‘A’|‘B’|‘C’|‘D’|‘E’|‘F’|‘G’|‘H’|‘I’|‘J’|‘K’|‘L’|‘M’|‘N’|

‘O’|‘P’|‘Q’|‘R’|‘S’|‘T’|‘U’|‘V’|‘W’|‘X’|‘Y’|‘Z’|‘_’
namechar := ‘A’|‘B’|‘C’|‘D’|‘E’|‘F’|‘G’|‘H’|‘I’|‘J’|‘K’|‘L’|‘M’|‘N’|

‘O’|‘P’|‘Q’|‘R’|‘S’|‘T’|‘U’|‘V’|‘W’|‘X’|‘Y’|‘Z’|‘_’|‘0’|
‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’

nameseg := <leadnamechar namechar namechar namechar> |
<leadnamechar namechar namechar> |
<leadnamechar namechar > |
<leadnamechar >

namepath := nameseg | <namepath ‘.’ nameseg>
rootpath := ‘\’
prefixpath := ‘^’ [‘^’...]
NameString := <rootpath namepath> | <prefixpath namepath> | namepath

15.1.3 ASL Language and Terms
ASL := DefinitionBlockTerm
DefinitionBlockTerm := DefinitionBlock (

OutPutFileName , //String
Signature , //String
DSDT Revision , //ByteConst
OEMID, //String
TableID , //String
OEMRevision //DWordConst
)
{TermList}

TermList := Nothing | Term [Term ...]
Term := CompilerDirectiveTerm | DeclarationTerm | OperatorCodeTerm
CompilerDirectiveTerm := IncludeTerm
IncludeTerm := Include (

Pathname //String (file system pathname)
)

DataObjectTerm := BufferTerm | LiteralDataTerm | PackageTerm
BufferTerm := Buffer (

ByteCount | Nothing //OpCode=>Integer
)
{ Initializer } //String | ByteList

LiteralDataTerm := Integer | String
Integer := ByteConst | WordConst | DwordConst
ByteConst := 0x00 through 0xFF, inclusive
WordConst := 0x0000 through 0xFFFF, inclusive
DwordConst := 0x00000000 to 0xFFFFFFFF,inclusive
ByteList := Nothing | ByteConst [,ByteConst ...]
String := ‘”’ AsciiCharList ‘”’
AsciiCharList := Nothing | AsciiChar [AsciiChar ...]
AsciiChar := 0x01 through 0x7F, inclusive
NullChar := 0x00
PackageTerm := Package (

ElementCount | Nothing //ElementCount is ByteConst
)
{ PackageList }

PackageList := Nothing | PackageElement [,PackageElement ...]
PackageElement := DataObjectTerm | ConstantTerm | SuperName
ConstantTerm := OneTerm | OnesTerm | ZeroTerm
OneTerm := One
OnesTerm := Ones //ByteConst | WordConst | DwordConst
ZeroTerm := Zero
SuperName := Namestring | MethodObjectTerm | DebugTerm
ResultName := Nothing | SuperName
MethodObjectTerm := ArgTerm | LocalTerm
ArgTerm := Arg0  | Arg1  | Arg2  | Arg3  | Arg4  | Arg5  | Arg6
LocalTerm := Local0  | Local1  | Local2  | Local3  | Local4  | Local5  | Local6 |

Local7
DebugTerm := Debug

DeclarationTerm := NamedObjectTerm | NameSpaceModifierTerm
KeywordTerm := AccessTypeKeyword | LockRuleKeyWord | MatchOpKeyword |

RegionSpaceKeyword | SerializeRuleKeyword |
UpdateRuleKeyword

AccessTypeKeyword := AnyAcc  | ByteAcc  | WordAcc | DWordAcc | BlockAcc |
SMBSendRecvAcc |  SMBQuickAcc
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LockRuleKeyword := Lock  | NoLock
MatchOpKeyword := MEQ | MGE | MGT | MLE | MLT | MTR
RegionSpaceKeyword := EmbeddedControl  | PCI_Config  | SystemIO  | SystemMemory | SMBus
SerializeRuleKeyword := Serialized  | NotSerialized | Nothing
UpdateRuleKeyword := Preserve  | WriteAsOnes  | WriteAsZeros

NamedObjectTerm := BankFieldTerm | DeviceTerm | EventTerm | FieldTerm |
IndexFieldTerm | MethodTerm | MutexTerm | OperationRegionTerm |
PowerResourceTerm | ProcessorTerm | ThermalZoneTerm

BankFieldTerm := BankField (
RegionName , //NameString
BankName, //NameString
BankValue , //OpCode=>DWord
AccessType, //AccessTypeKeyword
LockRule , //LockRuleKeyword
UpdateRule //UpdateRuleKeyword
)
{FieldList}

FieldList := Nothing | Field [,Field ...]
Field := OffsetTerm | FieldEntry | AccessTerm
FieldEntry := <Nothing | NameSeg> ‘,’ Integer
OffsetTerm := Offset ( ByteOffset ) //integer
AccessTerm := AccessAs (

AccessType, //AccessTypeKeyword
AccessAttribute //ByteConst
)

DeviceTerm := Device (
BusDeviceName //NameString
)
{NamedObjectList}

NamedObjectList := Nothing | NamedObjectTerm [NamedObjectTerm ...]
EventTerm := Event (

EventName //NameString
)

FieldTerm := Field (
RegionName , //NameString
AccessType , //AccessTypeKeyword
LockRule , //LockRuleKeyword
UpdateRule //UpdateRuleKeyword
)
{FieldList}

IndexFieldTerm := IndexField (
IndexName , //NameString
DataName, //NameString
AccessType , //AccessTypeKeyword
LockRule , //LockRuleKeyword
UpdateRule //UpdateRuleKeyword
)
{FieldList}

MethodTerm := Method (
MethodName, //NameString
ArgCount, //ByteConst
SerializeRule //SerializeRuleKeyword
)
{TermList}

MutexTerm := Mutex (
MutexName, //NameString
SyncLevel //ByteConst
)

OperationRegionTerm := OperationRegion (
RegionName , //NameString
RegionSpace , //RegionSpaceKeywd
Offset , //OpCode=>DWord
Length //OpCode=>DWord
)

PowerResourceTerm := PowerResource (
ResourceName , //NameString
SystemLevel , //ByteConst
ResourceOrder //WordConst
)
{NamedObjectList}

ProcessorTerm := Processor (
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ProcessorName , //NameString
ProcessorID , //ByteConst
PBlockAddress , //ByteConst
PBlockLength //DWordConst
)
{NamedObjectList}

ThermalZoneTerm := ThermalZone (
ZoneName //NameString
)
{NamedObjectList}

NameSpaceModifierTerm := AliasTerm | NameTerm | ScopeTerm
AliasTerm := Alias (

Source , //NameString
Destination //NameString
)

NameTerm := Name (
ObjectName , //NameString
Target //DataObjectTerm
)

ScopeTerm := Scope (
Location //NameString
)
{TermList}

OperatorCodeTerm := Type1OpCode | Type2OpCode | Type2Macro

UserMethodTerm := SuperName(ArgList)
ArgList := Nothing | Arg [,Arg ...]
Arg := OpCode
OpCode := Type2OpCode | SuperName | ConstantTerm | LiteralDataTerm |

Type2Macro

// A Type1OpCode term can only be used standing alone on a
// line of ASL code; because these types of terms do not
// return a value they cannot be used as a term in an
// expression
// A Type2OpCode term can be used in an expression

Type1OpCode := BreakTerm | BreakPointTerm| CreateBitFieldTerm |
CreateByteFieldTerm | CreateDWordFieldTerm |
CreateFieldTerm | CreateWordFieldTerm |
ElseTerm | FatalTerm | IfTerm | NoOpTerm | NotifyTerm |
ReleaseTerm | ResetTerm | ReturnTerm | SignalTerm |
SleepTerm | StallTerm | UnloadTerm | WhileTerm

BreakTerm := Break
BreakPointTerm := BreakPoint
CreateBitFieldTerm := CreateBitField (

Source , //OpCode=>Buffer
BitIndex , //OpCode=>Integer
Destination //SuperName
)

CreateByteFieldTerm := CreateByteField (
Source , //OpCode=>Buffer
ByteIndex , //OpCode=>Integer
Destination //SuperName
)

CreateDwordFieldTerm := CreateDwordField (
Source , //OpCode=>buffer
ByteIndex , //OpCode=>Integer
Destination //SuperName
)

CreateFieldTerm := CreateField (
Source , //OpCode=>Buffer
Offset, //OpCode=>Integer
NumBits , //OpCode=>Integer
Destination //SuperName
)

CreateWordFieldTerm := CreateWordField (
Source , //OpCode
ByteIndex , //OpCode
Destination //SuperName
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)
ElseTerm := Else

{ False } //TermList
FatalTerm := Fatal (

Type , //ByteConst
Code, //DWordConst
Arg //OpCode=>Integer
)

IfTerm := If (
Predicate //OpCode=>Integer
)
{ True } //TermList

NoopTerm := Noop
NotifyTerm := Notify (

NotifyObject , //SuperName
NotificationValue //OpCode=>Byte
)

ReleaseTerm := Release (
SynchObject //SuperName
)

ResetTerm :=
Reset (

SynchObject //SuperName
)

ReturnTerm := Return (
Arg //OpCode=>Object
)

SignalTerm := Signal (
SynchObject //SuperName
)

SleepTerm := Sleep (
Millisecond //OpCode=>Integer
)

StallTerm := Stall (
Microseconds //OpCode=>Byte
)

UnloadTerm := Unload (
NameSpaceObjectRef //NameString

)
WhileTerm := While (

Predicate ) //OpCode
{ True } //TermList

Type2OpCode := AcquireTerm | AddTerm | AndTerm | ConcatenateTerm |
DecrementTerm | DivideTerm |
ElseTerm | FindSetLeftBitTerm |
FindSetRightBitTerm | FromBCDTerm | IncrementTerm |
IndexTerm | LAndTerm | LEqualTerm | LGreaterTerm |
LGreaterEqualTerm | LLessTerm | LLessEqualTerm |
LNotTerm | LNotEqualTerm | LoadTerm | MatchTerm |
MultiplyTerm | NAndTerm | NorTerm | NotTerm |
ObjectTypeTerm | OrTerm | ShiftLeftTerm |
ShiftRightTerm | SizeOfTerm | StoreTerm |
SubtractTerm | ToBCDTerm | WaitTerm | XOrTerm

AcquireTerm := Zero | Ones <= //Ones means timed-out
Acquire (

SynchObject, //SuperName
TimeOut //WordConst
)

AddTerm := Integer <=
Add(

Addend1, //OpCode=>Integer
Addend2, //OpCode=>Integer
Result //ResultName
)

AndTerm := Integer <=
And(

Source1 , //OpCode=>Integer
Source2 , //OpCode=>Integer
Result //ResultName
)

ConcatenateTerm := Integer | String | Buffer <=
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Concatenate (
Source1 , //OpCode
Source2 , //OpCode
Destination //SuperName
)

CondRefOfTerm := Ones | Zero <=
CondRefOf (

Source //SuperName
Destination //SuperName
)

DecrementTerm := Integer <=
Decrement (

Addend //SuperName
)

DivideTerm := Integer <= //returns Result
Divide (

Dividend , //OpCode=>Integer
Divisor, //OpCode=>Integer
Remainder, //ResultName
Result //ResultName
)

FindSetLeftBitTerm := ByteConst <=
FindSetLeftBit (

Source , //OpCode=>Integer
BitNo //SuperName
)

FindSetRightBitTerm := ByteConst <=
FindSetRightBit (

Source , //OpCode=>Integer
BitNo //SuperName
)

FromBCDTerm := Integer <=
FromBCD(

BcdValue, //OpCode=>Integer
Destination //ResultName
)

IncrementTerm := Integer <=
Increment (

Addend //SuperName
)

IndexTerm := PackageElement <=
Index (

Source, //OpCode=>PackageObject
Index, //OpCode=>Integer
Destination //NameString
)

LAndTerm := Ones | Zero <=
LAnd(

Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

LEqualTerm := Ones | Zero <= //Ones means equal
LEqual (

Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

LGreaterTerm := Ones | Zero <= //Ones means S1 > S2
LGreater (

Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

LGreaterEqualTerm:= Ones | Zero  <= //Ones means S1 >= S2
LGreaterEqual (

Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

LLessTerm := Ones | Zero <= //Ones means S1 < S2
LLess (

Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

LLessEqualTerm := Ones | Zero <= //Ones means S1 <= S2
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LLessEqual (
Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

LNotTerm := Ones | Zero <=
LNot (

Source //OpCode=>Integer
)

LNotEqualTerm := Ones | Zero <= //Ones means S1 <> S2
LNotEqual (

Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

LoadTerm := DwordConst <= // Name space object reference
Load (

RegionName //NameString
)

LOrTerm := Integer <=
LOr (

Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

MatchTerm := Integer | Ones <=
Match (

SearchPackage , //OpCode=>Package
Op1, //MatchOpKeyword
V1, //OpCode=>Object
Op2, //MatchOpKeyword
V2, //OpCode=>Object
Start //OpCode=>Object
)

MultiplyTerm := Integer <=
Multiply (

Multiplcand , //OpCode=>Integer
Multiplier, //OpCode=>Integer
Result //ResultName
)

NAndTerm := Integer <=
NAnd(

Source1 , //OpCode=>Integer
Source2, //OpCode=>Integer
Result //ResultName
)

NOrTerm := Integer <=
NOr(

Source1 , //OpCode=>Integer
Source2, //OpCode->Integer
Result //ResultName
)

NotTerm := Integer <=
Not (

Source1, //OpCode=>Integer
Result //ResultName
)

ObjectTypeTerm := ByteConst <=
ObjectType (

Object //SuperName
)

OrTerm := Integer <=
Or(

Source1 , //OpCode=>Integer
Source2, //OpCode=>Integer
Result //ResultName
)

RefOfTerm := ObjectReference <=
RefOf (

Object //SuperName
)

ShiftLeftTerm := Integer <=
ShiftLeft (

Source , //OpCode=>Integer
Count //OpCode=>Integer
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Result //ResultName
)

ShiftRightTerm := Integer <=
ShiftRight (

Source , //OpCode=>Integer
Count //OpCode=>Integer
Result //ResultName
)

SizeOfTerm := Integer <=
SizeOf (

DataObject //SuperName=>DataObject
)

StoreTerm := Buffer | Integer | String <=
Store (

Source , //OpCode
Destination //SuperName
)

SubtractTerm := Integer <=
Subtract (

Addend1 , //OpCode=>Integer
Addend2, //OpCode=>Integer
Result //ResultName
)

ToBCDTerm := Integer <=
ToBCD(

Value //OpCode=>Integer
Destination //ResultName
)

WaitTerm := Zero | Ones <= //Ones means timed-out
Wait (

SynchObject , //SuperName
TimeOut //OpCode

)
XOrTerm := Integer <=

XOr(
Source1 , //OpCode=>Integer
Source2, //OpCode=>Integer
Result //ResultName
)

Type2Macro := EISADTerm | ResourceTemplateTerm
EISADTerm := DwordConst <=

EISAID (
ID //String
)

ResourceTemplateTerm := Buffer <=
ResourceTemplate ()

{ResourceMacroList}
ResourceMacroList := ResourceMacroTerm [ResourceMacroTerm ...]
ResourceMacroTerm := DMATerm | DWORDIOTerm | DWORDMemoryTerm |

EndDependentFnTerm | FixedIOTerm |
InterruptTerm | IOTerm | IRQNoFlagsTerm | IRQTerm |
Memory24Term | Memory32FixedTerm | Memory32Term |
StartDependentFnTerm | StartDependentFnNoPriTerm |
VendorLongTerm | VendorShortTerm |
WORDBusNumberTerm | WORDIOTerm

DMATerm := Buffer <=
DMA(

Compatibility  | TypeA  | TypeB  | TypeF , // _TYP, DMA channel speed
BusMaster  | NotBusMaster , // _BM, Nothing defaults to BusMaster
Transfer8  | Transfer16  | Transfer8_16 // _SIZ, Transfer size
NameString | Nothing // A name to refer back to this resource
)
{
ByteConst [, ByteConst ...] // List of channel numbers(valid values: 0-17)
}

DWORDIOTerm := Buffer <=
DWORDIO(

ResourceConsumer  | ResourceProducer  | Nothing, // Nothing == ResourceConsumer
MinFixed  | MinNotFixed  | Nothing, // _MIF, Nothing => MinNotFixed
MaxFixed  | MaxNotFixed  | Nothing, // _MAF, Nothing => MaxNotFixed
SubDecode  | PosDecode  | Nothing, // _DEC, Nothing => PosDecode
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ISAOnlyRanges  | NonISAOnlyRanges  | EntireRange  | Nothing,
// _RNG, Nothing => EntireRange

DWordConst, // _GRA, Address granularity
DWordConst, // _MIN, Address range minimum
DWordConst, // _MAX, Address range max
DWordConst, // _TRA, Translation
ByteConst | Nothing, // Resource Source Index;

// if Nothing, not generated
NameString | Nothing // Resource Source;

// if Nothing, not generated
NameString | Nothing // A name to refer back to

// this resource
)

DWORDMemoryTerm := Buffer <=
DWORDMemory(

ResourceConsumer  | ResourceProducer  | Nothing, // Nothing=>ResourceConsumer
SubDecode  | PosDecode  | Nothing, // _DEC, Nothing=>PosDecode
MinFixed  | MinNotFixed  | Nothing, // _MIF, Nothing=>MinNotFixed
MaxFixed  | MaxNotFixed  | Nothing, // _MAF, Nothing=>MaxNotFixed
Cacheable  | WriteCombining  | Prefetchable  | NonCacheable  | Nothing,

// _MEM, Nothing=>NonCacheable
ReadWrite  | ReadOnly , // _RW, Nothing=>ReadWrite
DWordConst, // _GRA, Address granularity
DWordConst, // _MIN, Address range minimum
DWordConst, // _MAX, Address range max
DWordConst, // _TRA, Translation
ByteConst | Nothing, // Resource Source Index;

// if Nothing, not generated
NameString | Nothing // Resource Source;

// if Nothing, not generated
NameString | Nothing // A name to refer back

// to this resource
)

EndDependentFnTerm := Buffer <=
EndDependentFn (

)
FixedIOTerm := Buffer <=

FixedIO (
WordConst, // _BAS, Address base
ByteConst, // _LEN, Range length
NameString | Nothing // A name to refer back

// to this resource
)

InterruptTerm := Buffer <=
Interrupt (

ResourceConsumer  | ResourceProducer  | Nothing, // Nothing=>ResourceConsumer
Edge | Level , // _LL, _HE
ActiveHigh  | ActiveLow , // _LL, _HE
Shared  | Exclusive  | Nothing, // _SHR, Nothing=>Exclusive
ByteConst | Nothing, // Resource Source Index;

// if Nothing, not generated
NameString | Nothing, // Resource Source;

// if Nothing, not generated
NameString | Nothing // A name to refer back

// to this resource
)
{
DWordConst [, DWordConst ...] // _INT, list of interrupt

// numbers
}

IOTerm := Buffer <=
IO (

Decode16  | Decode10 , // _DEC
WordConst, // _MIN, Address minimum
WordConst, // _MAX, Address max
ByteConst, // _ALN, Base alignment
ByteConst // _LEN, Range length
NameString | Nothing // A name to refer back

// to this resource
)

IRQNoFlagsTerm := Buffer <=
IRQNoFlags (

NameString | Nothing // A name to refer back
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// to this resource
)
{
ByteConst [, ByteConst ...] // list of IRQ numbers

// (valid values: 0-15)
}

IRQTerm := Buffer <=
IRQ(

Edge | Level , // _LL, _HE
ActiveHigh  | ActiveLow , // _LL, _HE
Shared  | Exclusive  | Nothing, // _SHR, Nothing=>Exclusive
NameString | Nothing // A name to refer back to

// this resource
)
{
ByteConst [, ByteConst ...] // List of IRQ numbers

// (valid values: 0-15)
}

Memory24Term := Buffer <=
Memory24(

ReadWrite  | ReadOnly , // _RW
WordConst, // _MIN, Minimum base memory address [23:8]
WordConst, // _MAX, Maximum base memory address [23:8]
WordConst, // _ALN, Base alignment
WordConst // _LEN, Range length
NameString | Nothing // A name to refer back to this resource
)

Memory32Fixedterm := Buffer <=
Memory32Fixed (

ReadWrite  | ReadOnly , // _RW
DWordConst, // _BAS, Range base
DWordConst // _LEN, Range length
NameString | Nothing // A name to refer back to this resource
)

Memory32Term := Buffer <=
Memory32(

ReadWrite | ReadOnly, // _RW
DWordConst, // _MIN, Minimum base memory address
DWordConst, // _MAX, Maximum base memory address
DWordConst, // _ALN, Base alignment
DWordConst // _LEN, Range length
NameString | Nothing // A name to refer back to this resource
)

StartDependentFnTerm := Buffer <=
StartDependentFn (

ByteConst, // Compatibility priority (valid values: 0-2)
ByteConst // Performance/Robustness priority

// (valid values: 0-2)
)
{
// List of descriptors for this dependent function
}

StartDependentFnNoPriTerm := Buffer <=
StartDependentFnNoPri (

)
{
// List of descriptors for this dependent function
}

VendorLongTerm := Buffer <=
VendorLong (

NameString | Nothing // A name to refer back to this resource
)
{
ByteConst [, ByteConst ...] // List of bytes
}

VendorShortTerm := Buffer <=
VendorShort (

NameString | Nothing // A name to refer back to this resource
)
{
ByteConst [, ByteConst ...] // List of bytes, up to 7 bytes
}

WORDBusNumberTerm := Buffer <=
WORDBusNumber(

ResourceConsumer  | ResourceProducer  | Nothing, // Nothing=>ResourceConsumer



ACPI Source Language (ASL) Reference 15-215

Intel/Microsoft/Toshiba

MinFixed  | MinNotFixed  | Nothing, // _MIF, Nothing=>MinNotFixed
MaxFixed  | MaxNotFixed  | Nothing, // _MAF, Nothing=>MaxNotFixed
SubDecode  | PosDecode  | Nothing, // _DEC, Nothing=>PosDecode
WordConst, // _GRA, Address granularity
WordConst, // _MIN, Address range minimum
WordConst, // _MAX, Address range max
WordConst, // _TRA: Translation
ByteConst | Nothing, // Resource Source Index;

// if Nothing, not generated
NameString | Nothing // Resource Source;

// if Nothing, not generated
NameString | Nothing // A name to refer back

// to this resource
)

WORDIOTerm := Buffer <=
WORDIO(

ResourceConsumer  | ResourceProducer  | Nothing, // Nothing=>ResourceConsumer
MinFixed  | MinNotFixed  | Nothing, // _MIF, Nothing=>MinNotFixed
MaxFixed  | MaxNotFixed  | Nothing, // _MAF, Nothing=>MaxNotFixed
SubDecode  | PosDecode  | Nothing, // _DEC, Nothing=>PosDecode
ISAOnlyRanges  | NonISAOnlyRanges  | EntireRange , // _RNG
WordConst, // _GRA, Address granularity
WordConst, // _MIN, Address range minimum
WordConst, // _MAX, Address range max
WordConst, // _TRA, Translation
ByteConst | Nothing, // Resource Source Index;

// if Nothing, not generated
NameString | Nothing // Resource Source;

// if Nothing, not generated
NameString | Nothing // A name to refer back

// to this resource
)

15.2 Full ASL Reference
This reference section is for developers who are writing ASL code while developing definition blocks for
platforms.

15.2.1 ASL Names
This section describes how to encode object names using ASL.
The following table lists the characters legal in any position in an ASL object name.

Table 15-2  Control Method Named Object Reference Encodings

Value Description
41-5A, 5F Lead character of name (‘A’ - ‘Z’, ‘_’) LeadNameChar
30-39, 41-5A,  5F Non-lead (trailing) character of name (‘A’

- ‘Z’, ‘_’, ’0 - 9’)
NameChar

The following table lists the name modifiers.

Table 15-3  Definition Block Name Modifier Encodings

Description NamePrefix := Followed by …
5C Name space root (‘\’) RootPrefix  Name
5E Parent name space (‘^’) ParentPrefix  Name
2E Name extender: 1 DualNamePrefix  Name Name
2F Name extender: N MultiNamePrefix count  Namecount

15.2.2 ASL Data Types
The contents of an object, or the data it references, may be abstract entities (for example, “Device Object”) or
can be one of three computational data types. The computational data type can be used as arguments to many of
the ASL Operator terms.
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Table 15-4  Data Types

Data Type Description
Integer 32-bit little endian unsigned value.
Buffer Arbitrary fixed length array of bits.
String ASCIIZ string 1 to 200 characters in length (including NullChar).

These data types are automatically converted as needed during computation as shown in the following table:

Table 15-5  Data Type Conversion

Data Type Comment
Integer Converts to string of its hex representation

Converts to a 32-bit buffer.
Buffer Buffers of 32 bits or less convert to their integer representation. Buffers which are

larger then 32 bits cannot be converted to integer.
Converts to string by its hex-dump representation with a space every 8 bits.

String Does not convert.

15.2.3 ASL Terms
This section describes all the ASL terms and provides sample ASL code that uses the terms. For other sample
ASL code, see the three sections of the specification that describe ACPI concept machines.

The ASL terms are grouped into the following categories:
• Definition block term
• Compiler directive terms
• Data object terms
• Declaration terms
• Operator terms

15.2.3.1 Definition Block Term
DefinitionBlockTerm := DefinitionBlock (

OutPutFileName , //String
Signature , //String
DSDT Revision , //ByteConst
OEMID, //String
TableID , //String
OEMRevision //DWordConst
)
{TermList}

The DefinitionBlock  term specifies the unit of data and/or AML code that the OS will load as part of the
Differentiated Definition Block or as part of an addition Definition Block. This unit of data and/or AML code
describes either the base system or some large extension (such as a docking station). The entire DefinitionBlock
will be loaded and compiled by the OS as a single unit, and can be unloaded by the OS as a single unit.

15.2.3.2 Compiler Directive Terms
IncludeTerm := Include (

Pathname //String (file system pathname)
)

Pathname is the full OS file system path to another file that contains ASL terms to be included in the current file
of ASL terms.
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15.2.3.3 Data Object Terms
There are four types of ASL declaration terms: constant terms, data object declaration terms, the debug object
term, and method object terms.

15.2.3.3.1 Constant Terms
The constant declaration terms are One, Ones, and Zero.

15.2.3.3.1.1 One - Constant One Object
OneTerm := One

The constant one object is an object of type Integer that will always read the LSb as set and all other bits as clear
(that is, the value of 1). Writes to this object have no effect and are ignored.

15.2.3.3.1.2 Ones - Constant Ones Object
OnesTerm := Ones //ByteConst | WordConst | DwordConst

The constant ones object is an object of type Integer that will always read as all bits set. Writes to this object
have no effect and are ignored.

15.2.3.3.1.3 Zero - Constant Zero Object
ZeroTerm := Zero

The constant zero object is an object of type Integer that will always read as all bits clear. Writes to this object
have no effect and are ignored.

15.2.3.3.2 Data Object Declaration Terms
The data object declaration terms are:
• Buffer declarations (used to declare and initialize long strings).
• Literal data declarations (used to declare and initialize integers and short strings).
• Package data declarations (used to declare arrays and data structures).

15.2.3.3.2.1 Buffer - Declare Buffer
BufferTerm := Buffer (

ByteCount | Nothing //OpCode=>Integer
)
{ Initializer } //String | ByteList

Declares a Buffer, of size ByteCount and initial value of Initializer.

The optional ByteCount parameter specifies the size of the buffer and the initial value is specified in Initializer.
If ByteCount is not specified, it defaults to the size of initializer. If the count is too small to hold the value
specified by initializer, initializer size is used. For example, all four of the following examples generate the same
datum in name space, although they have different ASL encodings:

Buffer(10) {“P00.00A”}
Buffer(Arg0) {0x50 0x30 0x30 0x2e 0x30 0x30 0x41}
Buffer(10) {0x50 0x30 0x30 0x2e 0x30 0x30 0x41 0x00 0x00 0x00}
Buffer() {0x50 0x30 0x30 0x2e 0x30 0x30 0x41 0x00 0x00 0x00}

15.2.3.3.2.2 Literal Data Declarations
LiteralDataTerm := Integer | String

15.2.3.3.2.2.1 Integers
Integer := ByteConst | WordConst | DwordConst
ByteConst := 0x00 through 0xFF, inclusive
WordConst := 0x0000 through 0xFFFF, inclusive
DwordConst := 0x00000000 to 0xFFFFFFFF,inclusive
ByteList := Nothing | ByteConst [,ByteConst ...]

Using the above grammar to define an object containing the value of integer causes the ASL compiler to
automatically pick the proper width of the defined integer (byte, word, or Dword).
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15.2.3.3.2.2.2 Strings
String := ‘”’ AsciiCharList ‘”’
AsciiCharList := Nothing | AsciiChar [AsciiChar ...]
AsciiChar := 0x01 through 0x7F, inclusive
NullChar := 0x00

The above grammar can be used to define an object containing a read-only string value. The default string value
is the null string, which has 0 bytes available for storage of other values.
Since literal strings are read-only constants, the following ASL statement (for example) is not supported:

Store(“ABC”, ”DEF”)

However, the following sequence of statements is supported:
Name(STR, ”DEF”)
...

Store(“ABC”, STR)

15.2.3.3.2.3 Package - Declare Package Object
PackageTerm := Package (

ElementCount | Nothing //ElementCount is ByteConst
)
{ PackageList }

Declares an unnamed aggregation of data items, constants, and/or references to control methods. The size of the
package is ElementCount. PackageList contains the list data items, constants, and/or control method references
used to initialize the package. If ElementCount is absent, it is set to match the number of elements in the
PackageList. If ElementCount is present and greater than the number of elements in the PackageList, the default
entry Undefined is used to initialize the package elements beyond those initialized from the PackageList.
Evaluating an undefined element will yield an error, but they can be assigned values to make them defined. It is
an error for ElementCount to be less than the number of elements in the PackageList

There are two types of package elements in the PackageList: references to data objects and references to control
methods.

Note: Version 1.0 of the Microsoft-provided ASL compiler does not allow non-method code package objects
(code packages). However, there is nothing in the ACPI specification that precludes this. If implemented in an
ASL compiler, evaluation on non-method code package objects are performed in the scope of the invoking
method.  The targets of all stores, loads, and references to the locals, arguments, or constant terms are the same
invoking method’s objects.

Example 1:

Package () {
3,
9,
“ACPI 1.0 COMPLIANT”,
Package () {

“CheckSum=>”,
Package () {

7,
9

}
},
0

}

Example 2: This example defines and initializes a two-dimensional array.

Package () {
Package () {11, 12, 13},
Package () {21, 22, 23}

}

Example 3: This example is a legal encoding, but of no apparent use.
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Package (){}

Example 4: This encoding allocates space for ten things to be defined later (see the Name and IndexField term
definitions).

Package (10) {}

15.2.3.3.3 Debug Data Object
DebugTerm := Debug

The debug data object is an object of type Operation Region, which has “virtual content.”  Writes to this object
provide debugging information. On at least debug versions of the interpreter any writes into this object are
appropriately displayed on the system’s native kernel debugger. All writes to the debug object are otherwise
benign. If the system is in use without a kernel debugger, then writes to the debug object are ignored. The
following table relates the ASL term types that can be written to the Debug object to the format of the
information on the kernel debugger display.

Table 15-6  Debug Object Display Formats

ASL Term Type Display Format
Numeric data object All digits displayed in hexadecimal format.
String data object String is displayed
Object reference Information about the object is displayed (for example, object type and  object

name), but the object is not evaluated.

The Debug object is a write-only object; attempting to read from the debug object is not supported.

15.2.3.3.4 Method Objects
The method objects can be used in control methods to pass and receive arguments and for local storage
variables.

15.2.3.3.4.1 Arg0 | Arg1 | Arg2 … - Argument Data Objects
ArgTerm := Arg0  | Arg1  | Arg2  | Arg3  | Arg4  | Arg5  | Arg6

Up to 7 argument object references can be passed to a control method. On entry to a control method, only the
argument objects that are passed are usable.

15.2.3.3.4.2 Local0 | Local1 | Local2… - Local Data Object
LocalTerm := Local0  | Local1  | Local2  | Local3  | Local4  | Local5  | Local6 |

Local7

Up to 8 locals can be referenced as one byte encodings. On entry to a control method these objects are
uninitialized and cannot be used until some value or reference is stored into the object. Once initialized, these
objects are preserved in the scope of execution for that control method.

15.2.3.4 Declaration Terms
There are two types of ASL declaration terms: named object terms and name space modifier terms.

15.2.3.4.1 Named Object Terms
The ASL terms that can be used to create named objects in a definition block are listed in the following table.

Table 15-7  Named Object Creators

ASL Statement Description
BankField Declares fields in a banked configuration object.
Device Declares a bus/device object.
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ASL Statement Description
Event Declares an event synchronization object.
Field Declares fields.
IndexField Declares fields in an index/data configuration object.
Method Declares a control method.
Mutex Declares a synchronization method.
OperationRegion Declares an operational region.
PowerResource Declares a power resource object.
Processor Declares a processor package.
ThermalZone Declares a thermal zone package.

15.2.3.4.1.1 BankField - Declare Bank/Data Field
BankFieldTerm := BankField (

RegionName , //NameString
BankName, //NameString
BankValue , //OpCode=>DWord
AccessType, //AccessTypeKeyword
LockRule , //LockRuleKeyword
UpdateRule //UpdateRuleKeyword
)
{FieldList}

This statement creates a data object at load time. The contents of the created object are obtained by a reference
to a bank selection register.
This encoding is used to define named data objects whose data values are fields within a larger object selected
by a bank selected register. Accessing the contents of a banked field data object will occur automatically
through the proper bank setting, with synchronization occurring on the operation region that contains the
bankname data variable, and on the global lock if specified by the LockRule.
The AccessType, LockRule, UpdateRule, and FieldList are the same format as the Field operator.

The following is a block of ASL sample code using BankField:
• Creates a 4-bit bank select register in system I/O space.
• Creates overlapping fields in the same system I/O space which are selected via the bank register.
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// define 256-byte operational region in SystemIO space
// and name it GIO0
OperationRegion (GIO0, 1, 0x125, 0x100) {}

// create some field in GIO including a 4 bit bank select register
Field (GIO0, ByteAcc, NoLock, Preserve) {

GLB1, 1,
GLB2, 1,
Offset(1), // move to offset for byte 1
BNK1, 4

}

// Create FET0 & FET1 in bank 0 at byte offset 0x30
BankField (GIO0, BNK1, 0, ByteAcc, NoLock, Preserve) {

Offset (0x30),
FET0, 1,
FET1, 1

}

// Create BLVL & BAC in bank 1 at the same offset
BankField (GIO0, BNK1, 1, ByteAcc, NoLock, Preserve) {

Offset (0x30),
BLVL, 7,
BAC,  1

}

15.2.3.4.1.2 Device - Declare Bus/Device Package
DeviceTerm := Device (

BusDeviceName //NameString
)
{NamedObjectList}

Creates a Device object, which represents either a bus or a device or any other such entity of use. Device opens
a name scope.

A Bus/Device Package is one of the basic ways the Differentiated Definition Block describes the hardware
devices in the system to the operating software. Each Bus/Device Package is defined somewhere in the
hierarchical name space corresponding to that device’s location in the system. Within the name space of the
device are other names that provide information and control of the device, along with any sub-devices that in
turn describe sub-devices, and so on.

For any device, the BIOS provides only information that is added to the device in a non-hardware standard
manner. This type of “value added” function is expressible in the ACPI Definition Block such that operating
software can use the function.

The BIOS supplies Device Objects only for devices that are obtaining some system-added function outside the
device’s normal capabilities and for any Device Object required to fill in the tree for such a device. For example,
if the system includes a PCI device (integrated or otherwise) with no additional functions such as power
management, the BIOS would not report such a device; however, if the system included an integrated ISA
device below the integrated PCI device (device is an ISA bridge), then the system would include a Device
Package for the ISA device with the minimum feature being added being the ISA device’s ID and configuration
information and the parent PCI device, because it is required to get the ISA Device Package placement in the
Name Space correct.

The following block of ASL sample code shows a nested use of Device objects to describe an IDE controller.
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Device (IDE0) { // primary controller
Name(_ADR, 0) // put device/function id here

// define region for IDE mode register
OperationRegion (PCIC, PCI_Config, 0x50, 0x10) { }
Field (PCIC, AnyAcc, NoLock, Preserve) {

…
}

Device(MSTR) { // master channel
Name(_ADR, 0)
Name(_PR0, Package(){0, PIDE})
Method (_STM, 2) {

…
}

}

Device(SLAV) {
Name(_ADR, 1)
Name(_PR0, Package(){0, PIDE})
Method (_STM, 2) {

…
}

}
}

15.2.3.4.1.3 Event - Declare Event Synchronization Object
EventTerm := Event (

EventName //NameString
)

Creates an event synchronization object named EventName.

For more information about the uses of an event synchronization object, see the ASL definitions for the Wait,
Signal, and Reset function operators in section  15.2.3.5.1.

15.2.3.4.1.4 Field - Declare Field Objects
FieldTerm := Field (

RegionName , //NameString
AccessType , //AccessTypeKeyword
LockRule , //LockRuleKeyword
UpdateRule //UpdateRuleKeyword
)
{FieldList}

Declares a series of named data objects whose data values are fields within a larger object. The fields are parts
of the object named by RegionName, but their names appear in the scope of the Field term. Field opens a name
scope.

For example, the field operator allows a larger operation region that represents a hardware register to be broken
down into individual bit fields that can then be accessed by the bit field names. Extracting and combining the
component field from its parent is done automatically when the field is accessed.

Accessing the contents of a field data object provides access to the corresponding field within the parent object.
If the parent object supports Mutex synchronization, accesses to modify the component data objects  will
acquire and release ownership of the parent object around the modification.

All accesses within the parent object are performed naturally aligned. If desired, AccessType can be used to
force minimum access width. Note that the parent object must be able to accommodate the AccessType width.
For example, an access type of WordAcc cannot read the last byte of an odd-length operation region. Not all
access types are meaningful for every type of operational region.

The following table relates region types declared with an OperationRegion term to the different access types
supported for each region.
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Table 15-8  OperationRegion Region Types and Access Types

Region Types Access Type Description
SystemMemory ByteAcc
SystemIO WordAcc
PCI_Config DWordAcc

AnyAcc Read/Write byte, word, Dword access
EmbeddedControl ByteAcc
SMBus ByteAcc Read/Write SMBus byte protocol

WordAcc Read/Write SMBus word protocol
BlockAcc Read/Write SMBus block protocol
AnyAcc Read/Write linear SMBus byte, word, block

protocol
SMBSendRecvAcc Send/Receive SMBus protocol
SMBQuickAcc QuickRead/QuickWrite SMBus protocol

If LockRule is set to Lock, accesses to modify the component data objects will acquire and release the global
lock. If both types of locking occur, the global lock is acquired after the parent object Mutex.

UpdateRule is used to specify how the unmodified bits of a field are treated. For example, if a field defines a
component data object of 4 bits in the middle of an WordAcc region, when those 4 bits are modified the
UpdateRule specifies how the other 12 bits are treated.

The named data objects are provided in FieldList as a series of names and bit widths. Bits assigned no name (or
NULL) are skipped. The ASL compiler supports an Offset(byte_offset) macro within a FieldList to skip to the
bit position of the supplied byte offset.

For support of  non-linear address devices, such as SMBus devices, a protocol is required to be associated with
each command value. The ASL compiler supports the AccessAs(AccessType, AccessAttribute) macro within a
FieldList. The AccessAttribute portion of the macro is interpreted differently depending on the address space.
For System Memory, SystemIO, PCI_Config or Embedded Controller space the AccessAttribute is reserved.
For SMBus devices the AccessAttribute indicates the command value of the SMBus device to use for the field
being defined. The AccessAttribute allows a specific protocol to be associated with the fields following the
macro and can contain any of the Access Type listed in the table.

15.2.3.4.1.4.1 SMBus Slave Address
SMBus device Addressing supports both a linear and non-linear addressing mechanism.  This section clarifies
how ACPI treats these types of devices and how they should be defined and accessed.  SMBus devices are
defined to have a fixed 7-bit slave address.  This can be illustrated by the smart battery subsystem devices:

Table 15-9  Examples of SMBus Devices and Slave Addresses

SMBus Device Description Slave Address (A0-A6)
SMBus Host Slave Interface 0x8
SBS Charger 0x9
SBS Selector 0xA
SBS Battery 0xB

The SMBus driver expects a 7-bit slave address for the device to be passed to it.  The 1.0 System Management
Bus specification defines the address protocols (how data is passed on the wiggling pins) as:

R
/

W
Slave Address (A6-A0)

7 1 023456



Advanced Configuration and Power Management Interface Specification 15-224

Intel/Microsoft/Toshiba

Figure 15-1  SMBus Slave Address Protocol

This indicates that bit 0 of the protocol represents whether this access is a read or write cycle, and the next six
bits represent the slave address. Note that the driver expects a zero-based address, not a one-based address.  For
example, the SBS battery has a slave address of 0xB, or 0001011b (bits 0, 1 and 4 being set). This value is
represented by 0x16 for writes or 0x17 for reads to the smart battery in the SMBus protocol format. The
protocol format of the slave address and the actual slave address should not be confused as the SMBus driver
expects the actual slave address, not the protocol format with the read/write value; the driver will shift the slave
address left by 1 bit and mask in the read/write protocol.

15.2.3.4.1.4.2 SMBus Addressing
Associated with each SMBus device is an 8-bit command register that represents an additional address space
within the device, allowing up to 256 registers within an SMBus device. For some devices this is treated as a
linear address space; for other devices such as the Smart Battery, this is treated as a non-linear address space.
The SMBus driver differentiates these types of devices so that it can understand how to use the different SMBus
protocols on the device.

A linear address device treats the command and slave address fields as a byte-linear 15-bit address space where
the address is formed as follows:

Command Address

14 012345678910111213

Slave Address

Figure 15-2  SMBus Linear Address Decode

For example an SMBus memory device that consumes slave address 0x40 would be accessing a linear address
range of 0x4000-0x40FF (256 bytes of address space). A byte access to 0x4000 (slave 0x40, command 0) would
access byte location 0x4000 (slave 0x40, command 0), and a word access to 0x4000 (slave 0x40, command 0)
would access byte locations 0x4000-0x4001 (slave 0x40, commands 0-1). For a device that behaves in this
manner, ASL should indicate an AnyAcc in the field operator defining the SMBus device.  This indicates to the
SMBus driver that it can use the read/write block, read/write word, or read/write byte protocols to access this
device.

A non-linear address device (such as the smart battery) defines each command value within the device to be a
potentially different size.  The ACPI driver treats such a device differently from a linear address device by only
accessing command values with the specified protocol only.  For example the smart battery device has a slave
address of 0xB and a definition for the first two command values as follows:

Table 15-10  Example Command Codes from the Smart Battery

Command Address Data Type Protocol to Access
0x0 Manufacture Access Word Read/Write
0x1 Remaining Capacity Alarm Word Read/Write
0x2 Remaining Time Alarm Word Read/Write
…
0x20 Manufacture Name Block Read/Write
0x21 Device Name Block Read/Write

The Smart Battery uses a non-linear programming model. Each command register can be a different size and has
a specific SMBus protocol associated with it. For example command register 0x0 contains a word of data (which
in a linear device would take up two command registers 0 and 1) that represents the “Manufacture Access” and
command register 0x1 contains the next word of data (which in a linear device would take up two command
registers 0 and 1) that represents the “Remaining Capacity.” In a linear address model these registers would
overlap; however, this is legitimate SMBus device definition. As a further example command register 0x20 can
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represent up to 32 bytes of data (block read/write) and command register 0x21 also represents up to 32 bytes of
data.

15.2.3.4.1.4.3 SMBus Protocols
This section describes the different SMBus protocols and how the SMBus driver treats them. It also gives
examples of how to define and then access such devices in ASL.

15.2.3.4.1.4.3.1 Quick Protocol (QuickAcc)
The SMBus Quick protocol does not transfer any data. This protocol is used to control simple devices and
consists of the slave address with the R/W bit set high or low. Therefore, two types of Quick commands can be
generated:  QuickRead with the R/W protocol bit reset LOW or QuickWrite with the R/W protocol bit set
HIGH. A device defined to use the quick protocol has no command registers, and consumes the entire 7-bit
slave address.

To define a quick device an operation region is generated using the SMBus address type.  Next a field is
generated in the operation region using the “QuickAcc” access type.  To generate a QuickWrite protocol to this
device,  ASL would generate a write to this field.  To generate a QuickRead protocol to this device, ASL would
generate a read to this field.  Note that even though the ASL read the field and a QuickRead protocol was sent to
the device, the device does not return any data and the numeric result returned by the SMB driver to the ASL
will be 0. For example,

Device(\_SB.EC0) {
Name(_HID, EISAID("PNP0C09"))
Name(_CRS,

ResourceTemplate(){ // port 0x62 and 0x66
IO(Decode16, 0x62, 0x62, 0, 1),
IO(Decode16, 0x66, 0x66, 0, 1)

}
)
Name(_GPE, Zero)
Device (SMB1) {

Name(_ADR, "ACPI0001")
Name(_EC, 0x8030) // EC offset(0x80), Query (0x30)
OperationRegion(PHO1, SMBus, 0x61, 0x1)
Device(DEVA){

Name(_ADR, 0x61) // Slave Address 0x61
Field(PHO1, QuickAcc, NoLock, Preserve) {

QCKA, 1
}

} // end of DEVA
} // end of SMB1

} // end of EC0

This example creates a quick SMBus device residing at slave address 0x61 called “QCKA”.  Examples of
generating the Quick0 and Quick1 commands from ASL is illustrated below:

Method(Test){
Store(1, QCKA) // Generates a QuickRead command to slave address 0x61
Store(QCKA, Local0) // Generates a QuickWrite command to slave address 0x61

}

15.2.3.4.1.4.3.2 Send/Receive Command Protocol (SMBSendRecvAcc)
The SMBus Send/Receive protocol transfers a byte of data between the selected SMBus slave address and the
ASL code performing a read/write to the field.  The SMBus protocol for send-command is defined that the byte
being written is presented in the “command” field, while the data returned from a read-command is defined to be
the byte in the data field. The SMBus driver will read and write the data to a SMBSendRecvAcc field
accordingly.

To define a send/receive command to a device an operation region is generated using the SMBus address type.
Next a field is generated in the operation region using the “SMBSendRecvAcc” access type.  To generate a send
byte protocol to this device,  ASL would generate a write to this field. To generate a receive byte protocol to this
device, ASL would generate a read to this field. For example,
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Device(\_SB.EC0) {
Name(_HID, EISAID("PNP0C09"))
Name(_CRS,

ResourceTemplate(){ // port 0x62 and 0x66
IO(Decode16, 0x62, 0x62, 0, 1),
IO(Decode16, 0x66, 0x66, 0, 1)

}
)
Name(_GPE, Zero)
Device (SMB1) {

Name(_ADR, "ACPI0001")
Name(_EC, 0x8030) // EC offset(0x80), Query (0x30)
OperationRegion(PHO1, SMBus, 0x62, 0x1)
Device(DEVB){

Name(_ADR, 0x62) // Slave Address 0x62
Field(PHO1, SMBSendRecvAcc, NoLock, Preserve) {

TSTA, 1,
TSTB, 1,
TSTC, 5

}
} // end of DEVB

} // end of SMB1
} // end of EC0

This example creates a send/receive byte SMBus device residing at slave address 0x62.  There are three fields
that reference this single byte called “TSTA”, “TSTB” and “TSTC”. Examples of generating the send/receive
byte protocols from ASL are illustrated below:

Method(Test){
Store(1, TSTA) // Sets TSTA, preserved TSTB and TSTC, sendbyte
Store(0, TSTB) // Clears TSTB, preserved TSTA and TSTC, sendbyte
Store(0x7, TSTC) // Sets TSTC to 0111b, preserved TSTA and TSTB, sendbyte
Store(TSTA, Local0) // returns 1, receive byte
Store(TSTB, Local0) // returns 0, receive byte
Store(TSTC, Local0) // returns 7, receive byte

}

Read/Write Byte Protocol (ByteAcc)
The SMBus Read/Write Byte protocol transfers a byte of data between the selected SMBus slave address and
command value. The command address is defined through the use of the AccessAs(AccessType,
AccessAttribute) macro. In this case the AccessAtrribute represents the byte aligned command value, and
AccessType would be set to ByteAcc.

To define a ByteAcc device an operation region is generated using the SMBus address type.  Next a field is
generated in the operation region using the “ByteAcc” access type.  In the field list an AccessAs(ByteAcc,
command_value) macro is used to define what command address is associated with this field. The absence of the
macro assume a starting command value of 0. The SMBus driver assumes that after the AccessAs(ByteAcc,
command_value) macro is declared, the next 8-bits represent this command register. If a field is defined that
crosses over this 8-bit boundary, then the SMBus driver assumes this field resides in multiple byte-wide
command registers with a command address value of command_value+1 (for each new register) using the
ByteAcc protocol.

To generate a write byte protocol to this device,  ASL would generate a write to this field.  To generate a read
byte protocol to this device, ASL would generate a read to this field. For example,
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Device(\_SB.EC0) {
Name(_HID, EISAID("PNP0C09"))
Name(_CRS,

ResourceTemplate(){ // port 0x62 and 0x66
IO(Decode16, 0x62, 0x62, 0, 1),
IO(Decode16, 0x66, 0x66, 0, 1)

}
)
Name(_GPE, Zero)
Device (SMB1) {

Name(_ADR, "ACPI0001")
Name(_EC, 0x8030) // EC offset(0x80), Query (0x30)
OperationRegion(PHO1, SMBus, 0x63, 0x1)
Device(DEVB){

Name(_ADR, 0x63) // Slave Address 0x63
Field(PHO1, ByteAcc, NoLock, Preserve) {

AccessAs(ByteAcc, 0),
TSTA, 1,
TSTB, 1,
TSTC, 5,
TSTD, 4 // this field spans command address 0 and 1

}
} // end of DEVB

} // end of SMB1
} // end of EC0

This example creates a read/write byte SMBus device residing at slave address 0x63.  There are four fields that
use two command registers (0 and 1), called “TSTA”, “TSTB”, “TSTC”, and “TSTD”.  TSTA, TSTB and
TSTC reference command register 0.  TSTD references both command registers 0 and 1: bit0 of TSTD
represents bit 7 of command register 0, while bits 1-3 of field TSTD represent bits 0-2 of command register 1.
Examples of generating the read/write byte protocols from ASL is illustrated below:

Method(Test){
Store(1, TSTA) // Sets TSTA, preserved TSTB and TSTC, write byte
Store(0, TSTB) // Clears TSTB, preserved TSTA and TSTC, write byte
Store(0x7, TSTC) // Sets TSTC to 0111b, preserved TSTA and TSTB, write byte
Store(0xF, TSTD) // Sets TSTD to 0xF, command registers 0 and 1
Store(TSTA, Local0) // returns 1, read byte
Store(TSTB, Local0) // returns 0, read byte
Store(TSTC, Local0) // returns 7, read byte
Store(TSTD, Local0) // returns 0xF from command registers 0 and 1

}

15.2.3.4.1.4.3.3 Read/Write Word Protocol (WordAcc)
The SMBus Read/Write Word protocol transfers a word of data between the selected SMBus slave address and
command value. The command address is defined through the use of the AccessAs(AccessType,
AccessAttribute) macro. In this case the AccessAttribute represents the byte aligned command value, and
AccessType should be set to WordAcc.

To define a WordAcc device an operation region is generated using the SMBus address type. Next a field is
generated in the operation region using the “WordAcc” access type. In the field list an AccessAs(WordAcc,
command_value) macro is used to define what command address is associated with this field. The absence of the
macro assume a starting command value of 0. The SMBus driver assumes that after the AccessAs(WordAcc,
command_value) macro is declared, the next 16-bits represent this command register. If a field is defined that
crosses over this 16-bit boundary, then the SMBus driver assumes this field resides in multiple word wide
command registers with a command address value of command_value+2 (for each new register) using the
WordAcc protocol.

To generate a write word protocol to this device,  ASL would generate a write to this field. To generate a read
word protocol to this device, ASL would generate a read to this field.

15.2.3.4.1.4.3.4 Read/Write Block Protocol ( BlockAcc )
The SMBus Read/Write Block protocol transfers up to a 32 byte buffer of data between the selected SMBus
slave address and command value.  The command address is defined through the use of the
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AccessAs(AccessType, AccessAttribute) macro.  In this case the AccessAttribute represents the byte aligned
command value, and AccessType would be set to BlockAcc.

To define a BlockAcc device an operation region is generated using the SMBus address type. Next a field is
generated in the operation region using the “BlockAcc” access type.  In the field list an AccessAs(BlockAcc,
command_value) macro is used to define what command address is associated with this field. The absence of the
macro assume a starting command value of 0. The SMBus driver assumes that after the AccessAs(BlockAcc,
command_value) macro is declared the command register is 32 bytes or less. Each block field must start on the a
command_value boundary.

The SMBus driver passes block data to and from ASL through the buffer data type. The buffer is structured such
that the byte count of the data to write is in record 0 followed by the buffer data. For example a 5 byte buffer
with the contents of  1, 2, 3, 4  would be generated as:

Buffer(5){4, 1, 2, 3, 4}

Where the length of the buffer is its byte data width plus 1, and the first entry is the length of data (buffer length
minus 1). On reads, ASL will return a buffer with the first entry set to the number of data bytes returned. For
example,

Device(\_SB.EC0) {
Name(_HID, EISAID("PNP0C09"))
Name(_CRS,

ResourceTemplate(){ // port 0x62 and 0x66
IO(Decode16, 0x62, 0x62, 0, 1),
IO(Decode16, 0x66, 0x66, 0, 1)

}
)
Name(_GPE, Zero)

Device (SMB1) {
Name(_ADR, "ACPI0001")
Name(_EC, 0x8030) // EC offset(0x80), Query (0x30)
OperationRegion(PHO1, SMBus, 0x65, 0x1)
Device(DEVB){

Name(_ADR, 0x65) // Slave Address 0x65
Field(PHO1, BlockAcc, NoLock, Preserve) {

AccessAs(BlockAcc, 0),
FLD1, 128,
AccessAs(BlockAcc, 0x10),
FLD2, 32

}
} // end of DEVB

} // end of SMB1
} // end of EC0

This example creates a read/write block SMBus device residing at slave address 0x65.  There are two fields that
use two command registers (0 and 0x10), called “FLD1”, and “FLD2”. Examples of generating the read/write
block protocols from ASL is illustrated below:

Method(Test){
Name(BUF1, Buffer(){8, 1, 2, 3, 4, 5, 6, 7, 8} // 8 is the number of bytes
Name(BUF2, Buffer(){4, 9, 10, 11, 12} // 4 is the number of bytes
Store(BUF1, FLD1) // Sets FLD1 SMBus device block register
Store(BUF2, FLD2) // Sets FLD2 SMBus device block register
Store(FLD1, Local0) // local0 contains buf: 8,1,2,3,4,5,6,7,8
Store(FLD2, Local0) // local0 contains buf: 4,9,10,11,12

}

15.2.3.4.1.4.3.5 SMBus Memory Devices (AnyAcc)
The AnyAcc access type allows any of the Read/Write byte, word or Block protocol transfers to be made to the
selected SMBus slave address and command value.  The combined slave and command value generates a single
byte granular address space. The command address (A0-A7 of the 15-bit address) is defined through the use of
the AccessAs(AccessType, AccessAtrribute) macro. In this case the AccessAttribute represents the byte aligned
command value, and AccessType would be set to AnyAcc.
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To define a AnyAcc device an operation region is generated using the SMBus address type.  Next a field is
generated in the operation region using the “AnyAcc” access type. In the field list an AccessAs(AnyAcc,
command_value) macro is used to define what command address is associated with this field. The absence of the
macro assume a starting command value of 0. The SMBus driver assumes that after the AccessAs(AnyAcc,
command_value) macro is declared then command registers are byte-granular and linear. If a field is defined
that crosses over a byte boundary, then the SMBus driver assumes this field resides in multiple command
registers with a command address value of command_valuet+1 (for each new register). The SMBus driver will
use the most appropriate protocol for accessing the registers associated with the fields. For example, if a field
spans more than three bytes a read/write block protocol access can be made, while if only spanning a byte then
the read/write byte protocol can be used.

For example, a 5-byte buffer with the contents of “ACPI” would be generated as:

Buffer(){“ACPI”}

On reads, ASL will return a buffer with the first entry set to the number of data bytes returned. For example,

Device(\_SB.EC0) {
Name(_HID, EISAID("PNP0C09"))
Name(_CRS,

ResourceTemplate(){ // port 0x62 and 0x66
IO(Decode16, 0x62, 0x62, 0, 1),
IO(Decode16, 0x66, 0x66, 0, 1)

}
)
Name(_GPE, Zero)
Device (SMB1) {

Name(_ADR, "ACPI0001")
Name(_EC, 0x8030) // EC offset(0x80), Query (0x30)
OperationRegion(PHO1, SMBus, 0x66, 0x1)
Device(DEVB){

Name(_ADR, 0x66) // Slave Address 0x66
Field(PHO1, AnyAcc, NoLock, Preserve) {

FLD1, 512,
FLD2, 256,
FLD3, 32,
FLD4, 16,
FLD5, 8

}
} // end of DEVB

} // end of SMB1
} // end of EC0

This definition creates a linear SMBus device residing at slave address 0x66.  There are six fields that use 102
command registers (0-101), called “FLD1”, “FLD2” , “FLD3”, “FLD4” and “FLD5”.  FLD1 references
command registers 0-63 (first 64 bytes) and will be accessed by the block protocol (data is over 3 bytes).  FLD2
represents command registers 64-95 (next 32 bytes) and will be accessed by the block command protocol (data
is over 3 bytes).  FLD3 represents command registers 96-99 (next four bytes) and will be accessed by the block
command protocol (data is over 3 bytes).  FLD4 represents command registers 100-101 (next two bytes) and
will be accessed by the word command protocol.  FLD5 represents command register 102 (next byte) and will
be accessed by the byte command protocol.  Examples of generating the accesses from ASL is illustrated below:
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Method(Test){
Name(BUF1, Buffer(){“Hannibal”}
Name(BUF2, Buffer(){“Scipio Africanus”}
Name(BUF3, Buffer(){“Zama”}
Store(BUF1, FLD1) // writes “Hannibal” to linear addresses for FLD1
Store(BUF2, FLD2) // writes “Scipio Africanus” to linear addresses for FLD2
Store(BUF3, FLD3) // writes “Zama” to linear addresses for FLD3
Store(0xFF12, FLD4) // sets FLD4 to 0xFF12
Store(0xEF, FLD5) // sets FLD5 to 0xEF
Store(FLD1, Local0) // local0 contains 64 byte buffer with: “Hannibal”,0,…
Store(FLD2, Local0) // local0 contains 32 byte buffer with: “Scipio Africanus”,0,…
Store(FLD3, Local0) // local0 contains 4 bytes: “Zama”
Store(FLD4, Local0) // local0 contains 2 bytes: 0xFF12
Store(FLD5, Local0) // local0 contains 1 byte: 0xEF

}

15.2.3.4.1.4.3.6 Mixed Example (AnyAcc)
Some devices can be accessed through multiple protocols. This section gives an example of such a device.

Device(\SB._EC0) {
Name(_HID, EISAID("PNP0C09"))
Name(_CRS,

ResourceTemplate(){ // port 0x62 and 0x66
IO(Decode16, 0x62, 0x62, 0, 1),
IO(Decode16, 0x66, 0x66, 0, 1)

}
)
Name(_GPE, Zero)
Device (SMB1) {

Name(_ADR, "ACPI0001")
Name(_EC, 0x8030) // EC offset(0x80), Query (0x30)
OperationRegion(PHO1, SMBus, 0x67, 0x1)
Device(DEVB){

Name(_ADR, 0x67) // Slave Address 0x67
Field(PHO1, ByteAcc, NoLock, Preserve) {

AccessAs(AnyAcc, 0),
FLD1, 512,
FLD2, 256,
FLD3, 32,
AccessAs(WordAcc, 0x70),
FLD4, 16,
AccessAs(ByteAcc, 0x80),
FLD5, 8

}
} // end of DEVB

} // end of SMB1
} // end of EC0

This definition creates an SMBus device using various protocols residing at slave address 0x67. There are three
fields that use four command registers (0, 1, 2 and 3), called “FLD1”, “FLD2” and “FLD3”.  FLD1 references
command registers 0-1 (32 bytes per command register) and will be accessed by the byte, word and block linear
protocols.  FLD2 represents command register 064 and will be accessed by the byte, word and block linear
protocols.  FLD3 represents command register 96 and will be accessed by the byte, word and block linear
protocols.  FLD4 represents command register 0x70 and will be accessed by the word command protocol.
FLD5 represents command register 0x80 and will be accessed by the byte command protocol.

15.2.3.4.1.5 IndexField - Declare Index/Data Fields
IndexFieldTerm := IndexField (

IndexName , //NameString
DataName, //NameString
AccessType , //AccessTypeKeyword
LockRule , //LockRuleKeyword
UpdateRule //UpdateRuleKeyword
)
{FieldList}

Creates a data object at load time. The contents of the created object are accessed by an index/data-style
reference to BaseName and DataName. IndexField opens a name scope.
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This encoding is used to define named data objects whose data values are fields within an index/data register
pair. This provides a simple way to declare register variables that occur behind a typical index and data register
pair.
Accessing the contents of an indexed field data object will automatically occur through the data object by using
an index aligned on an AccessType boundary, with synchronization occurring on the operation region which
contains the index data variable, and on the global lock if specified by LockRule.

AccessType, LockRule, UpdateRule, and FieldList are the same format as the Field term.

The following is a block of ASL sample code using IndexField:

• Creates an index/data register in system I/O space made up of 8-bit registers.
• Creates a FET0 field within the indexed range.

Method(_EX1){
// define 256-byte operational region in SystemIO space
// and name it GIO0
OperationRegion (GIO0, 1, 0x125, 0x100) {}
// create field named Preserve structured as a sequence
// of index and data bytes
Field (GIO0, ByteAcc, NoLock, WriteAsZeros) {

IDX0, 8,
DAT0, 8,

.

.

.
}

// Create an IndexField within IDX0 & DAT0 which has
// FETs in the first two bits of indexed offset 0,
// and another 2 FETs in the high bit on indexed
// 2f and the low bit of indexed offset 30
IndexField (IDX0, DAT0, ByteAcc, NoLock, Preserve) {

FET0, 1,
FET1, 1,
Offset(0x2f), // skip to byte offset 2f
, 7, // skip another 7 bits
FET3, 1,
FET4, 1

}
// Clear FET3 (index 2f, bit 7)
Store (Zero, FET3)

}

15.2.3.4.1.6 Method - Declare Control Method
MethodTerm := Method (

MethodName, //NameString
ArgCount, //ByteConst
SerializeRule //SerializeRuleKeyword
)
{TermList}

Declares a named package containing a series of object references that collectively represent a control method,
which is a procedure that can be invoked to perform computation. Method opens a name scope.

System software executes a control method by referencing the objects in the package in order. For more
information on control method execution, see section 5.5.3.

The current name space location used during name creation is adjusted to be the current location on the name
space tree. Any names created within this scope are “below” the name of this package. The current name space
location is assigned to the method package, and all name space references that occur during control method
execution for this package are relative to that location.

The following block of ASL sample code shows a use of Method for defining a control method that turns on a
power resource.
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Method(_ON) {
Store (One, GIO.IDEP)  // assert power
Sleep (10)             // wait 10ms
Store (One, GIO.IDER)  // de-assert reset#
Stall (10)             // wait 10us
Store (Zero, GIO.IDEI) // de-assert isolation

}

15.2.3.4.1.7 Mutex - Declare Synchronization / Mutex Object
MutexTerm := Mutex (

MutexName, //NameString
SyncLevel //ByteConst
)

Creates a data mutex synchronization object named MutexName, with level from 0 to 15 specified by SyncLevel.

A synchronization object provides a control method with a mechanism for waiting for certain events. To prevent
deadlocks, wherever more than one synchronization object must be owned, the synchronization objects must
always be released in the order opposite the order in which they were acquired. The SyncLevel parameter
declares the logical nesting level of the synchronization object. All Acquire terms must refer to a
synchronization object with an equal or greater SyncLevel to current level, and all Release terms must refer to a
synchronization object with equal or lower SyncLevel to the current level.

Mutex synchronization provides the means for mutually exclusive ownership. Ownership is acquired using an
Acquire term and is released using a Release term. Ownership of a Mutex must be relinquished before
completion of any invocation.  For example, the top level control method cannot exit while still holding
ownership of a Mutex. Acquiring ownership of a Mutex can be nested. The SyncLevel check is not performed on
a Mutex when the ownership count is nesting.

15.2.3.4.1.8 OperationRegion - Declare Operation Region
OperationRegionTerm := OperationRegion (

RegionName , //NameString
RegionSpace , //RegionSpaceKeywd
Offset , //OpCode=>DWord
Length //OpCode=>DWord
)

Declares an operation region. Offset is the offset within the selected RegionSpace at which the region starts
(byte-granular), and Length is the length of the region in bytes.

An Operation Region is a type of data object where read or write operations to the data object are performed in
some hardware space. For example, the Definition Block can define an Operation Region within a bus, or
system IO space. Any reads or writes to the named object will results in accesses to the IO space.

Operation regions are regions in some space that contain hardware registers for exclusive use by ACPI control
methods. In general, no hardware register (at least byte granular) within the operation region accessed by an
ACPI control method can be shared with any accesses from any other source, with the exception of using the
Global Lock to share a region with the firmware. The entire Operation Region can be allocated for exclusive use
to the ACPI subsystem in the host OS.

In general, Operation Regions have “virtual content” and are only accessible via Field objects. If the length of
the Operation Region is equal to or less than 4 bytes long, control methods may directly access the entire region
as a data value. Operation Region objects may be defined down to actual bit controls using Field data object
definitions. The actual bit content of a Field are bits from within a larger Buffer that are normalized for that
field (i.e., shifted down and masked to the proper length), and as such the data type of a Field is Buffer .
Therefore Fields which are 32 bits or less in size may be read and stored as Integers.

An Operation Region object implicitly supports Mutex synchronization. Updates to the object, or a Field data
object for the region,  will automatically synchronize on the Operation Region object; however, a control
method may also explicitly synchronize to a region to prevent other accesses to the region (from other control
methods). Note that, according to the control method execution model, control method execution is non-
preemptive. Because of this, explicit synchronization to an Operation Region needs to be done only in cases
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where a control method blocks or yields execution and where the type of register usage requires such
synchronization.

The following example ASL code shows the use of OperationRegion combined with Field to describe IDE 0
and 1 controlled through general IO space, using one FET.

OperationRegion (GIO, SystemIO, 0x125, 0x1)
Field (GIO, ByteAcc, NoLock, Preserve) {

IDEI, 1, // IDEISO_EN    - isolation buffer
IDEP, 1, // IDE_PWR_EN   - power
IDER, 1 // IDERST#_EN   - reset#

}

15.2.3.4.1.9 PowerResource - Declare Power Resource
PowerResourceTerm := PowerResource (

ResourceName , //NameString
SystemLevel , //ByteConst
ResourceOrder //WordConst
)
{NamedObjectList}

Declares a power resource. PowerResource opens a name scope.
For a definition of the PowerResource term, see section 7.1.

15.2.3.4.1.10 Processor - Declare Processor
ProcessorTerm := Processor (

ProcessorName , //NameString
ProcessorID , //ByteConst
PBlockAddress , //ByteConst
PBlockLength //DWordConst
)
{NamedObjectList}

Declares a named processor object. Processor opens a name scope. Each processor is required to have a unique
ProcessorID value from any other ProcessorID value.

The ACPI BIOS declares one processor object per processor in the system under the \_PR name space.
PBlockAddress provides the system IO address for the processors register block.  Each processor can supply a
different such address. PBlockLength is the length of the processor register block, in bytes which is either 0 (for
no P_BLK) or 0x20.  With one exception, all processors are required to have the same PBlockLength.  The
exception is that the boot processor can have a non-zero PBlockLength when all other processors have a zero
PBlockLength.

The following block of ASL sample code shows a use of the Processor term.

Processor(
\_PR.CPU0, // name space name
1,
0x120, // PBlk system IO address

  0x20 // PBlkLen
)
{ }

15.2.3.4.1.11 ThermalZone - Declare Thermal Zone
ThermalZoneTerm := ThermalZone (

ZoneName //NameString
)
{NamedObjectList}

Declares a named Thermal Zone object. ThermalZone opens a name scope.
Each use of a ThermalZone term declares one thermal zone in the system. Each thermal zone in a system is
required to have a unique ZoneName.
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For sample ASL code that uses a ThermalZone statement, see section 12.4.

15.2.3.4.2 Name Space Modifier Terms
The name space modifiers are as follows:

Table 15-11   Name Space Modifiers

ASL Statement Description
Alias Defines a name alias
Name Defines a global name and attaches a buffer, literal data item, or

package to it.
Scope Declares the placement of one or more object names in the ACPI

name space when the definition block that contains the Scope
statement is loaded.

15.2.3.4.2.1 Alias - Declare Name Alias
AliasTerm := Alias (

Source , //NameString
Destination //NameString
)

Creates a new name, Destination, which refers to and acts exactly the same as Source.
At load time, Destination is created as an alias of Source in the name space. The Source name must already exist
in the name space. If the alias is to a name within the same definition block the Source name must be logically
ahead of this definition in the block. The following example shows use of an Alias term:

Alias(\SUS.SET.EVEN, SSE)

15.2.3.4.2.2 Name - Declare Named Object
NameTerm := Name (

ObjectName , //NameString
Target //DataObjectTerm
)

Attaches Target to ObjectName in the Global ACPI name space.

This encoding is a load-time encoding that creates ObjectName in the name space, which references the Target
object.

The following example creates the name PTTX in the root of the name space that references a package.

Name(\PTTX, // Port to Port Translate Table
Package() { Package() { 0x43, 0x59 }, Package() { 0x90, 0xff }}

)

The following example creates the name CNT in the root of the name space that references an integer data
object with the value 5.

Name(\CNT, 5)

15.2.3.4.2.3 Scope - Declare Name Scope
ScopeTerm := Scope (

Location //NameString
)
{TermList}

Gives a base scope to a collection of objects at load time. All object names defined within the scope act relative
to Location. Note that Location does not have to be below the surrounding scope. Note also that the Scope term
does not create objects, but only locates objects in the name space at load time; the located objects are created
by other ASL terms.
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The Scope term alters the current name space location to Location. This causes the defined objects within
TermList to occur relative to the new location in the name space.

The following example ASL code

Scope(\PCI0) {
Name(X, 3)
Scope(\) {

Method(_RQ) { Return(0) }
}
Name(^Y, 4)

}

places the defined objects in ACPI name space as shown in the following:

\PCI0.X
\_RQ
\Y

15.2.3.5 Operator Terms
There are two types of ASL operator terms: Type 1 operators and Type 2 operators.
• A Type1 operator term can only be used standing alone on a line of ASL code; because these types of terms

do not return a value, they cannot be used as a term in an expression.
• A Type2 operator term can be used in an expression; when used in an expression the argument that names

the object in which to store the result can be optional.

Note that in the operator definitions below, when the definition says “result is Stored in” this literally means that
the Store operator is assumed and the “execution result” is the Source operand to the Store operator.

15.2.3.5.1 Type 1 Operators
Type1OpCode := BreakTerm | BreakPointTerm | CreateBitFieldTerm |

CreateByteFieldTerm | CreateDWordFieldTerm |
CreateFieldTerm | CreateWordFieldTerm |
ElseTerm | IfTerm | FatalTerm | NoOpTerm | NotifyTerm |
ReleaseTerm | ResetTerm | ReturnTerm | SignalTerm |
SleepTerm | StallTerm | UnloadTerm |
WhileTerm

The Type 1 operators are listed in the following table.

Table 15-12  Type 1 Operators

ASL Statement Description
Break Stop executing the current code package at this point
BreakPoint Used for debugging.  Stops execution in the debugger
CreateBitField Create a bit field
CreateByteField Create a byte field
CreateDwordField Create a Dword field
CreateField Create a field
CreateWordField Create a word field
Else Else
Fatal Fatal check
If If
Noop No operation
Notify Notify the OS that a specified notification value for a NotifyObject has

occurred
Release Release a synchronization object
Reset Reset a synchronization object
Return Return from a control method, optionally setting a return value
Signal Signal a synchronization object
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ASL Statement Description
Sleep Sleep n milliseconds (yields the processor)
Stall Delay n microseconds (does not yield the processor)
Unload Unload differentiating definition block
While While

15.2.3.5.1.1 Break - Break
BreakTerm := Break

The break operation causes the current package execution to complete.

15.2.3.5.1.2 BreakPoint - BreakPoint
BreakPointTerm := BreakPoint

Used for debugging. Stops execution in the debugger. In the retail version of the interpreter, BreakPoint is
equivalent to Noop.

15.2.3.5.1.3 CreateBitField
CreateBitFieldTerm := CreateBitField (

Source , //OpCode=>Buffer
BitIndex , //OpCode=>Integer
Destination //SuperName
)

Source is evaluated as a buffer. Index is evaluated as an integer. A new field object is created for the bit of
Source at the bit index of Index, and a reference is Stored into Destination. The bit-defined field within Source
must exist.

15.2.3.5.1.4 CreateByteField
CreateByteFieldTerm := CreateByteField (

Source , //OpCode=>Buffer
ByteIndex , //OpCode=>Integer
Destination //SuperName
)

Source is evaluated as a buffer. Index is evaluated as an integer. A new field object is created for the byte of
Source at the byte index of Index, and a reference is Stored into Destination. The byte-defined field within
Source must exist.

15.2.3.5.1.5 CreateDWordField
CreateDwordFieldTerm := CreateDwordField (

Source , //OpCode=>buffer
ByteIndex , //OpCode=>Integer
Destination //SuperName
)

Source is evaluated as a buffer. Index is evaluated as an integer. A new field object is created for the Dword of
Source at the Dword index of Index, and a reference is Stored into Destination. The Dword-defined field within
Source must exist.

15.2.3.5.1.6 CreateField - Field
CreateFieldTerm := CreateField (

Source , //OpCode=>Buffer
Offset, //OpCode=>Integer
NumBits , //OpCode=>Integer
Destination //SuperName
)

Source is evaluated as a buffer and Offset and NoBits are evaluated as integers. A new field object is created for
the bits of Source at Offset for NoBits, and a reference is Stored into Destination. The entire bit range of the
defined field within Source must exist.
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15.2.3.5.1.7 CreateWordField
CreateWordFieldTerm := CreateWordField (

Source , //OpCode
ByteIndex , //OpCode
Destination //SuperName
)

Source is evaluated as a buffer. Index is evaluated as an integer. A new field object is created for the word of
Source at the word index of Index, and a reference is Stored into Destination. The word-defined field within
Source must exist.

15.2.3.5.1.8 Else - Else Operator
ElseTerm := Else

{ False } //TermList

In an If  term, if Predicate evaluates to 0, it is false, and the term list in False of the Else term is executed.  If
Predicate evaluates to Not 0 if the If  term, then it is considered true, and the term list in False of the Else term is
not executed. The execution result from an Else operation in undefined.

The following example checks Local0 to be zero or non-zero.  On non-zero, CNT is incremented; otherwise,
CNT is decremented.

If (Local0) {
Increment (CNT)

} Else {
Decrement (CNT)

}

15.2.3.5.1.9 Fatal - Fatal Check
FatalTerm := Fatal (

Type , //ByteConst
Code, //DWordConst
Arg //OpCode=>Integer
)

This operation is used to inform the OS that there has been an OEM-defined fatal error. In response, the OS
must log the fatal event and perform a controlled OS shutdown in a timely fashion.

15.2.3.5.1.10 If - If Operator
IfTerm := If (

Predicate //OpCode=>Integer
)
{ True } //TermList

Predicate is evaluated as an integer. If the integer is non-zero, the term list in True is executed. The execution
result from an If  operation is undefined.

The following examples all check for bit 3 in Local0 being set, and clear it if set.

// example 1
if (And(Local0, 4)) {

NAnd (Local0, 4, Local0)
}
// example 2
Store(4, Local2)
if (And(Local0, Local2)) {

NAnd (Local0, Local2, Local0)
}
// example 3
CreateBitField(Local0, 3, Local2)
if (Local2) {

Store (Zero, Local2)
}

15.2.3.5.1.11 Noop Code - No Operation
NoopTerm := Noop

This operation has no effect.
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15.2.3.5.1.12 Notify - Notify
NotifyTerm := Notify (

NotifyObject , //SuperName
NotificationValue //OpCode=>Byte
)

Notifies the OS that the NotificationValue for the NotifyObject has occurred. NotifyObject must be a reference to
a device or thermal zone object.
Notification values are determined by the NotifyObject type. For example, the notify values for a thermal zone
object are different than the notify values used for a device object. Undefined notification values are treated as
reserved and are ignored by the OS.
For lists of defined Notification values, see section 5.6.3.

15.2.3.5.1.13 Release - Release a Mutex Synchronization Object
ReleaseTerm := Release (

SynchObject //SuperName
)

SynchObject must be a reference to a synchronization object. If the synchronization object is a Mutex and it is
owned by the current invocation, ownership for the Mutex is released once. It is fatal to release ownership on a
Mutex unless it is currently owned. A Mutex must be totally released before an invocation completes.

15.2.3.5.1.14 Reset - Reset an Event Synchronization Object
ResetTerm :=

Reset (
SynchObject //SuperName
)

SynchObject must be a reference to an Event synchronization object.  This encoding is used to reset an event
synchronization object to a non-signaled state. See also the Wait and Signal function operator definitions.

15.2.3.5.1.15 Return - Return
ReturnTerm := Return (

Arg //OpCode=>Object
)

Returns control to the invoking control method, optionally returning an object named in Arg.
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15.2.3.5.1.16 Signal - Signal a Synchronization Event
SignalTerm := Signal (

SynchObject //SuperName
)

SynchObject must be a reference to an Event synchronization object. The Event object is signaled once,
allowing one invocation to acquire the event.

15.2.3.5.1.17 Sleep - Sleep
SleepTerm := Sleep (

Millisecond //OpCode=>Integer
)

The Sleep term is used to implement long-term timing requirements. Execution is delayed for at least the
required number of milliseconds. The implementation of Sleep is to round the request up to the closest sleep
time supported by the OS and relinquish the processor.

15.2.3.5.1.18 Stall - Stall for a Short Time
StallTerm := Stall (

Microseconds //OpCode=>Byte
)

The Stall term is used to implement short-term timing requirements. Execution is delayed for at least the
required number of microseconds. The implementation of Stall is OS-specific, but must not relinquish control of
the processor. Because of this, delays longer than 100 microseconds must use Sleep instead of Stall.

15.2.3.5.1.19 Unload - Unload Differentiated Definition Block
UnloadTerm := Unload (

NameSpaceObjectRef //NameString
)

Performs a run time unload of a Definition Block that was loaded using a Load term. Loading or unloading a
Definition Block is a synchronous operation, and no control method execution occurs during the function. On
completion of the Unload operation, the Definition Block has been unloaded (all the name space objects created
as a result of the corresponding Load operation will be removed from the name space).

15.2.3.5.1.20 While - While
WhileTerm := While (

Predicate ) //OpCode
{ True } //TermList

Predicate is evaluated as an integer.  If the integer is non-zero, the list of terms in True is executed. The
operation repeats until the Predicate evaluates to zero. The execution result from an While term is undefined.

15.2.3.5.2 Type 2 Operators
Type2OpCode := AcquireTerm | AddTerm | AndTerm | ConcatenateTerm |

CondRefOfTerm | DecrementTerm | DivideTerm |
FindSetLeftBitTerm |
FindSetRightBitTerm | FromBCDTerm | IncrementTerm |
IndexTerm | LAndTerm | LEqualTerm | LGreaterTerm |
LGreaterEqualTerm | LLessTerm | LLessEqualTerm |
LNotTerm | LNotEqualTerm | LoadTerm | MatchTerm |
MultiplyTerm | NAndTerm | NorTerm | NotTerm |
ObjectTypeTerm | OrTerm | RefOfTerm | ShiftLeftTerm |
ShiftRightTerm | SizeOfTerm | StoreTerm |
SubtractTerm | ToBCDTerm | WaitTerm | XOrTerm

The ASL terms for Type 2 Operators are listed in the following table.

Table 15-13   Type 2 Operators

ASL Statement Description
Acquire Acquire a synchronization object
Add Add two values
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ASL Statement Description
And Bitwise And
Concatenate Concatenate two strings
CondRefOf Conditional reference to an object
Decrement Decrement a value.
Divide Divide
FindSetLeftBit Index of first set Lsb
FindSetRightBit Index of first set Msb
FromBCD Convert from BCD to numeric
Increment Increment a value
Index Reference the nth element of a package
LAnd Logical And
LEqual Logical Equal
LGreater Logical Greater
LGreaterEqual Logical Not less
LLess Logical Less
LLessEqual Logical Not greater
LNot Logical Not
LNotEqual Logical Not equal
Load Load differentiating definition block
LOr Logical Or
Match Search for match in package array
Multiply Multiply
NAnd Bitwise Nand
NOr Bitwise Nor
Not Bitwise Not
ObjectType Type of object
Or Bitwise Or
RefOf Reference to an object
SizeOf Get the size of a buffer, string, or package
ShiftLeft Shift value left
ShiftRight Shift value right
Store Store value
Subtract Subtract values
ToBCD Convert numeric to BCD
Wait Wait
XOr Bitwise Xor

15.2.3.5.2.1 Acquire - Acquire a Mutex Synchronization Object
AcquireTerm := Zero | Ones <= //Ones means timed-out

Acquire (
SynchObject, //SuperName
TimeOut //WordConst
)

SynchObject refers to the mutex to be acquired. SynchObject must be a reference to a Mutex synchronization
object.

Ownership of the referenced Mutex is obtained. If the Mutex is already owned by a different invocation, the
processor is relinquished until the owner of the Mutex releases it or until at least TimeOut ms have elapsed. A
Mutex can be acquired more than once by the same invocation.

This operation returns a non-zero value if a TimeOut occurred and the mutex ownership was not acquired. A
TimeOut of 0xFFFF indicates that there is no time out and the operation will wait indefinitely.
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15.2.3.5.2.2 Add - Add
AddTerm := Integer <=

Add(
Addend1, //OpCode=>Integer
Addend2, //OpCode=>Integer
Result //ResultName
)

Addend1 and Addend2 are evaluated as integer data types and are added, and the result is Stored into Result.
Overflow conditions are ignored.

15.2.3.5.2.3 And - Bitwise And
AndTerm := Integer <=

And(
Source1 , //OpCode=>Integer
Source2 , //OpCode=>Integer
Result //ResultName
)

Source1 and Source2 are evaluated as integer data types, a bit-wise and is performed, and the result is Stored in
Result.

15.2.3.5.2.4 Concatenate - Concatenate
ConcatenateTerm := Integer | String | Buffer <=

Concatenate (
Source1 , //OpCode
Source2 , //OpCode
Destination //SuperName
)

Source1 and Source2 are evaluated.  Source2 is converted to the data type of Source1, and then concatenated
based on the following rules:

Data Type Description
Integer Treated as type buffer of 32 bits.
Buffer Results in a buffer of size (Source1.buffersize + Source2.buffersize), where the bits

from Source2 are concatenated to the bits from Source1.
String Results in a string where the characters from Source2 are concatenated to the

characters (less NullChar) from Source1.
Source1 and Source2 must be of the same data  type (that is, both integers, both strings, or both buffers).

15.2.3.5.2.5 CondRefOf - Conditional Reference Of
CondRefOfTerm := Ones | Zero <=

CondRefOf (
Source //SuperName
Destination //SuperName
)

Attempts to set Destination to refer to Source. The source of this operation can be any object type (e.g., data
package, device object, etc.). On success, the Destination object is set to refer to Source and the execution result
of this operation is the constant Ones object. On failure the execution result of this operation is the constant
Zero object and the Destination object is unchanged. This can be used to reference items in the name space
which may appear dynamically (e.g., from a dynamically loaded differentiation definition block).
CondRefOf is equivalent to RefOf except that if the Source object does not exist, it is fatal for RefOf but not
for CondRefOf.

15.2.3.5.2.6 Decrement - Decrement
DecrementTerm := Integer <=

Decrement (
Addend //SuperName
)

Same as Add(Addend, -1, Addend)
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15.2.3.5.2.7 Divide - Divide
DivideTerm := Integer <= //returns Result

Divide (
Dividend , //OpCode=>Integer
Divisor, //OpCode=>Integer
Remainder, //ResultName
Result //ResultName
)

Dividend and Divisor are evaluated as integer data. Dividend is divided by Divisor, then the resulting remainder
is Stored into Remainder and the resulting quotient is Stored into Result. Divide by zero exceptions are fatal.

15.2.3.5.2.8 FindSetLeftBit - Find Set Left Bit
FindSetLeftBitTerm := ByteConst <=

FindSetLeftBit (
Source , //OpCode=>Integer
BitNo //SuperName
)

Source is evaluated as buffer data type, and the one-based bit location of the first LSb (least significant bit) is
stored in BitNo. The result of 0 means no bit was set, 1 means the left-most bit set is the first bit, 2 means the
left-most bit set is the second bit, and so on.

15.2.3.5.2.9 FindSetRightBit - Find Set Right Bit
FindSetRightBitTerm := ByteConst <=

FindSetRightBit (
Source , //OpCode=>Integer
BitNo //SuperName
)

Source is evaluated as buffer data type, and the one-based bit location of the most least significant set bit is
Stored in BitNo. The result of 0 means no bit was set, 32 means the first bit set is the 32nd bit, 31 means the first
bit set is the 31st bit, and so on.

15.2.3.5.2.10 FromBCD - Convert from BCD
FromBCDTerm := Integer <=

FromBCD(
BcdValue, //OpCode=>Integer
Destination //ResultName
)

The FromBCD operation is used to convert BcdValue to a numeric format and store the numeric value in
Destination.

15.2.3.5.2.11 Increment - Increment
IncrementTerm := Integer <=

Increment (
Addend //SuperName
)

Equivalent to Add(Addend, 1, Addend)

15.2.3.5.2.12 Index - Index
IndexTerm := PackageElement <=

Index (
Source, //OpCode=>PackageObject
Index, //OpCode=>Integer
Destination //NameString
)

Source is evaluated and must be a package. Index is evaluated as an integer. The object at Index within Source is
stored as a reference into Destination. For example:



ACPI Source Language (ASL) Reference 15-243

Intel/Microsoft/Toshiba

Name(P1,
Package () {

Package () { 1, 2, 3 },
Package () { 4, 5, 6 }

}
)

Example 1:
Store(Index(P1, 1),  temp) // temp refers to the first package
Store(Index(temp, 2), temp2) // temp2 now refers to the  “2” entry
Store(52, temp2) // 2 is now 52

Example 2:
Store(52, Index(Index(P1,1),2)) // 2 is now 52

15.2.3.5.2.13 LAnd - Logical And
LAndTerm := Ones | Zero <=

LAnd(
Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

Source1 and source2 are evaluated as integers. If both values are non-zero, the Ones constant object is returned,
otherwise the Zero constant object is returned.

15.2.3.5.2.14 LEqual - Logical Equal
LEqualTerm := Ones | Zero <= //Ones means equal

LEqual (
Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

Source1 and Source2 are evaluated as buffers.  If the buffers are equal, the Ones constant object is returned;
otherwise, the Zero constant object is returned.

15.2.3.5.2.15 LGreater - Logical Greater
LGreaterTerm := Ones | Zero <= //Ones means S1 > S2

LGreater (
Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

Source1 and Source2 are evaluated as integers.  If Source1 is greater than Source2, the Ones constant object is
returned; otherwise, the Zero constant object is returned.

15.2.3.5.2.16 LGreaterEqual - Logical Greater Than Or Equal
LGreaterEqualTerm:= Ones | Zero  <= //Ones means S1 >= S2

LGreaterEqual (
Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

Source1 and Source2 are evaluated as integers. If Source1 is greater than or equal to Source2, the Ones constant
object is returned; otherwise, the Zero constant object is returned.

15.2.3.5.2.17 LLess - Logical Less
LLessTerm := Ones | Zero <= //Ones means S1 < S2

LLess (
Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

Source1 and Source2 are evaluated as integers. If Source1 is less than Source2, the Ones constant object is
returned; otherwise, the Zero constant object is returned.



Advanced Configuration and Power Management Interface Specification 15-244

Intel/Microsoft/Toshiba

15.2.3.5.2.18 LLessEqual - Logical Less Than Or Equal
LLessEqualTerm := Ones | Zero <= //Ones means S1 <= S2

LLessEqual (
Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

Source1 and Source2 are evaluated as integers. If Source1 is less than or equal to Source2, then the Ones
constant object is returned; otherwise, the Zero constant object is returned.

15.2.3.5.2.19 LNot - Logical Not
LNotTerm := Ones | Zero <=

LNot (
Source //OpCode=>Integer
)

Source1 is evaluated as buffer.  If the buffer is non-zero, the Zero constant object is returned; otherwise, the
Ones constant object is returned.

15.2.3.5.2.20 LNotEqual - Logical Not Equal
LNotEqualTerm := Ones | Zero <= //Ones means S1 <> S2

LNotEqual (
Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

Source1 and Source2 are evaluated as integers.  If Source1 is not equal to Source2, then the Ones constant
object is returned; otherwise, the Zero constant object is returned.

15.2.3.5.2.21 Load - Load Differentiated Definition Block
LoadTerm := DwordConst <= // Name space object reference

Load (
RegionName //NameString
)

Performs a run time load of a Definition Block. The Region parameter is the buffer that contains a
DESCRIPTION_HEADER of type SSDT or PSDT. This table is read into memory, the checksum is verified,
and then it is loaded into the ACPI name space.

The Load operation is used to perform a run time load of a Definition Block. Region is the buffer that contains
a DESCRIPTION_HEADER of type SSDT or PSDT. This table is read into memory, the checksum is verified,
and then it is loaded into the ACPI name space. The OS can also check the OEM Table ID and Revision ID
against a database for a newer revision Definition Block of the same OEM Table ID and load it instead. The
execution result of this operator is a object reference that can be used to unload the Definition Block  at a future
date. The Definition Block must be totally contained within the supplied operational region.

The default name space location to load the Definition Block is relative to the current name space. The new
Definition Block can override this by specifying absolute names or by adjusting the name space location using
the Scope operator.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition Block
has been loaded. The control methods defined in the Definition Block are not executed during load time.

15.2.3.5.2.22 LOr - Logical Or
LOrTerm := Integer <=

LOr (
Source1 , //OpCode=>Integer
Source2 //OpCode=>Integer
)

Source1 and Source2 are evaluated as integers. If either values is non-zero, the Ones constant object is returned;
otherwise, the Zero constant object is returned.
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15.2.3.5.2.23 Match - Find Object Match
MatchTerm := Integer | Ones <=

Match (
SearchPackage , //OpCode=>Package
Op1, //MatchOpKeyword
V1, //OpCode=>Object
Op2, //MatchOpKeyword
V2, //OpCode=>Object
Start //OpCode=>Object
)

SearchPackage is treated as a one-dimension array.  A comparison is performed for each element of the
package/array, starting with the index value indicated by Start (0 is the first element). If the element of
SearchPackage being compared against is called P[i], then the comparison is:

if (P[i] Op1 V1) and (P[i] Op2 V2) then Match -> i is returned.
If the comparison succeeds, the index of the element that succeeded is returned; otherwise, the Ones object is
returned.
Op1 and Op2 have the following values and meanings listed in the following table.

Table 15-14  Match Term Operator Meanings

Operator Encoding Macro
TRUE - a don’t care, always returns TRUE 0 MTR
EQ - returns TRUE if P[i] == V 1 MEQ
LE - returns TRUE if P[i] <= V 2 MLE
LT - returns TRUE if P[i] < V 3 MLT
GE - returns TRUE if P[i] >= V 4 MGE
GT - returns TRUE if P[i] > V 5 MGT

Following are some example uses of Match:
Name(P1,
Package() {1981, 1983, 1985, 1987, 1989, 1990, 1991, 1993, 1995, 1997, 1999, 2001}
)

// match 1993 == P1[i]
Match(P1, MEQ, 1993, MTR, 0, 0) // -> 7, since P1[7] == 1993

// match 1984 == P1[i]
Match(P1, MEQ, 1984, MTR, 0, 0) // -> ONES (not found)

// match P1[i] > 1984 and P1[i] <= 2000
Match(P1, MGT, 1984, MLE, 2000, 0) // -> 2, since P1[2]>1984 and P1[2]<=2000

// match P1[i] > 1984 and P1[i] <= 2000, starting with 3 rd  element
Match(P1, MGT, 1984, MLE, 2000, 3) // -> 3, first match at or past Start

// some examples with defaults

// Find entry GT 1984, starting with element #3 (Op2 defaults to MTR, V2 defaults to 0)
Match(P1, MGT, 1984,,,3)

// Find the first entry GE some value (Op2, V2, Start default to MTR, 0, 0)
Match(P1, MGE, FindValue)

15.2.3.5.2.24 Multiply - Multiply
MultiplyTerm := Integer <=

Multiply (
Multiplcand , //OpCode=>Integer
Multiplier, //OpCode=>Integer
Result //ResultName
)

Multiplicand and Multiplier are evaluated as integer data types. Multiplicand is multiplied by Multiplier, and the
result is Stored into Result. Overflow conditions are ignored.



Advanced Configuration and Power Management Interface Specification 15-246

Intel/Microsoft/Toshiba

15.2.3.5.2.25 NAnd - Bit-wise NAnd
NAndTerm := Integer <=

NAnd(
Source1 , //OpCode=>Integer
Source2, //OpCode=>Integer
Result //ResultName
)

Source1 and Source2 are evaluated as integer data types, a bit-wise nand is performed, and the result is Stored
in Result.

15.2.3.5.2.26 NOr - Bitwise NOr
NOrTerm := Integer <=

NOr(
Source1 , //OpCode=>Integer
Source2, //OpCode->Integer
Result //ResultName
)

Source1 and Source2 are evaluated as integer data types, a bit-wise nor is performed, and the result is Stored in
Result.

15.2.3.5.2.27 Not - Not
NotTerm := Integer <=

Not (
Source1, //OpCode=>Integer
Result //ResultName
)

Source1 is evaluated as an integer data type, a bit-wise not is performed ,and the result is stored in Result.

15.2.3.5.2.28 ObjectType - Object Type
ObjectTypeTerm := ByteConst <=

ObjectType (
Object //SuperName
)

The execution result of this operation is an integer that has the numeric value of the object type for Object. The
object type codes are listed in the following table.

Table 15-15  Values Returned By the ObjectType Operator

Value Meaning
0 Uninitialized
1 Integer
2 String
3 Buffer
4 Package
5 Field Unit
6 Device
7 Event
8 Method
9 Mutex
10 Operation Region
11 Power Resource
12 Processor
13 Thermal Zone
14 Alias
>14 Other
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15.2.3.5.2.29 Or - Bit-wise Or
OrTerm := Integer <=

Or(
Source1 , //OpCode=>Integer
Source2, //OpCode=>Integer
Result //ResultName
)

Source1 and Source2 are evaluated as integer data types, a bit-wide or is performed, and the result is Stored in
Result.

15.2.3.5.2.30 RefOf - Reference Of
RefOfTerm := ObjectReference <=

RefOf (
Object //SuperName
)

Returns a reference to Source.  The source of this operation can be any object type (for example, a package, a
device object, and so on).
If the Source object does not exist, the result of a RefOf operation is fatal. Use the CondRefOf term in cases
where the Source object might not exist.

15.2.3.5.2.31 ShiftLeft - Shift Left
ShiftLeftTerm := Integer <=

ShiftLeft (
Source , //OpCode=>Integer
Count //OpCode=>Integer
Result //ResultName
)

Source and Count are evaluated as integer data types. Source is shifted left with the least significant bit zeroed
Count times. The result is Stored into Result.

15.2.3.5.2.32 ShiftRight - Shift Right
ShiftRightTerm := Integer <=

ShiftRight (
Source , //OpCode=>Integer
Count //OpCode=>Integer
Result //ResultName
)

Source and Count are evaluated as integer data types. Source is shifted right with the most significant bit zeroed
Count times.  The result is Stored into Result.

15.2.3.5.2.33 SizeOf - SizeOf Data Object
SizeOfTerm := Integer <=

SizeOf (
DataObject //SuperName=>DataObject
)

Returns the size of a buffer, string, or package data object. For a buffer it returns the size in bytes of the data.
For a string, the size in bytes of the string NOT counting the trailing NULL. For a package, it returns the number
of elements.

15.2.3.5.2.34 Store - Store
StoreTerm := Buffer | Integer | String <=

Store (
Source , //OpCode
Destination //SuperName
)

This operation evaluates Source converts to the data type of Destination and writes the results into Destination.
If the Destination is of the type Uninitialized, then the Destination object is initialized as shown in the following
table.
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Table 15-16  Store Operator Initialization Data Types for Uninitialized Destinations

Data Type Description
Integer Destination initialized as integer.
Buffer If greater than 32 bits, destination initialized as buffer; otherwise, destination

initialized as integer.
String Destination initialized as string.

The Buffer data type is a fixed length data type. The source argument must be of equal or greater length then the
buffers size. Extra bits are truncated. Stores to buffer data types within an Operational Region may relinquish
the processor depending on the region type.

All stores (of any type) to the constant zero, constant one, or constant ones object are discarded.  Stores to read-
only objects are fatal. The execution result of the operation is Destination.

The following example creates the name CNT that references an integer data object with the value 5 and then
stores CNT to Local0. After the Store operation, Local0 is an integer object with the value 5.

Name(CNT, 5)
Store(CNT, Local0)

15.2.3.5.2.35 Subtract - Subtract
SubtractTerm := Integer <=

Subtract (
Addend1 , //OpCode=>Integer
Addend2, //OpCode=>Integer
Result //ResultName
)

Addend1 and Addend2 are evaluated as integer data types. Addend2 is subtracted from Addend1,  and the result
is Stored into Result.  Underflow conditions are ignored.

15.2.3.5.2.36 ToBCD - Convert to BCD
ToBCDTerm := Integer <=

ToBCD(
Value //OpCode=>Integer
Destination //ResultName
)

The ToBCD operation is used to convert Value from a BCD format to a numeric format and store the numeric
value in Destination.

15.2.3.5.2.37 Wait - Wait for a Synchronization Event
WaitTerm := Zero | Ones <= //Ones means timed-out

Wait (
SynchObject , //SuperName
TimeOut //OpCode

)

SynchObject refers to an event; the calling method blocks waiting for the event to be signaled. SynchObject must
be a reference to an Event synchronization object.

The pending signal count is decremented. If there is no pending signal count, the processor is relinquished until
a signal count is posted to the Event or until at least TimeOut ms have elapsed.

This operation returns a non-zero value if a time out occurred and a signal was not acquired. A TimeOut of
0xFFFF indicates that there is no time out and the operation will wait indefinitely.
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15.2.3.5.2.38 XOr - Bitwise XOr
XOrTerm := Integer <=

XOr(
Source1 , //OpCode=>Integer
Source2, //OpCode=>Integer
Result //ResultName
)

Source1 and Source2 are evaluated as integer data types, a bit-wise xor is performed, and the result is Stored in
Result.

15.2.3.6 Type 2 Macros
Type2MacroCode := EISADTerm | ResourceTemplateTerm

For a full definition of the ResourceTemplateTerm macro, see section 6.4.1.

15.2.3.6.1 EISAID - Convert EISA ID
EISADTerm := DwordConst <=

EISAID (
ID //String
)

Converts ID, a 7-character text string argument, into its corresponding 4-byte numeric EISA ID encoding. The
can be used when declaring IDs for devices that have EISA IDs.
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16. ACPI Machine Language (AML) Specification
This section formally defines the ACPI Control Method Machine Language (AML) language. AML is the
ACPI Control Method virtual machine language, a machine code for a virtual machine which is supported
by an ACPI-compatible OS. ACPI control methods can be written in AML, but humans ordinarily write
control methods in ASL.

AML  is the language processed by the ACPI method interpreter. It is primarily a declarative language. It’s
best not to think of it as a stream of code, but rather as a set of declarations that the ACPI interpreter will
compile into the ACPI name space at definition block load time. For example, notice that DefByte allocates
an anonymous integer variable with a byte size initial value in ACPI space, and passes in an initial value.
The byte in the AML stream that defines the initial value is not the address of the variable’s storage
location.

An OEM or BIOS vendor needs to write ASL and be able to single step AML for debugging.  (Debuggers
and other ACPI control method language tools are expected to be AML level tools, not source level tools.)
An ASL translator implementer must understand how to read ASL and generate AML.  An AML interpreter
author must understand how to execute AML.

AML and ASL are different languages though they are closely related.

All ACPI-compatible OSes must support AML. A given user can define some arbitrary source language (to
replace ASL) and write a tool to translate it to AML. However, the ACPI group will support a single
translator for a single language, ASL.

16.1 Notation Conventions
The notation conventions in the table below help the reader to interpret the AML formal grammar.

Table 16-1   AML Grammar Notation Conventions

Notation Convention Description Example
0xdd Refers to a byte value expressed as 2

hexadecimal digits.
0x21

Word in bold. Denotes the name of a term in the
AML grammar, representing any
instance of such a term.

Word in bold followed by an
argument in parenthesis.

Represents a particular instance of a
term in the AML grammar with a
particular value.

Words in italics. Names of arguments to objects that
are replaced for a given instance.

Term => representation Shows the actual representation in the
byte stream of the term to the left of
the =>.

Single quotes (‘ ’) Indicate constant characters. ‘A’ => 0x41
Term := Term Term … The term to the left of := can be

expanded into the sequence of terms
on the right.

aterm := bterm cterm means that
aterm can be expanded into the two-
term sequence of bterm followed by
cterm.

Term Term Term … Terms separated from each other by
spaces form an ordered list.

Square brackets ([ ] ) Indicates optional terms
Bar symbol ( | ) Separates alternatives. aterm := bterm  |  [cterm  dterm]

means the following constructs are
possible:
   bterm
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Notation Convention Description Example
   cterm  dterm
aterm := [bterm | cterm] dterm
means the following constructs are
possible:
   bterm  dterm
   cterm  dterm

Dash character ( - ) Indicates a range. 1-9 means a single digit in the range 1
to 9 inclusive.

Superscript following a term. The superscript is a repeat count. Aterm3 means aterm aterm aterm
Colon ( : ) term:n indicates that term is a bit field

composed of n bits.
aterm:bterm refers to the bitfield
bterm within the term aterm.

Term:3 means that term is a 3-bit
field.

Aterm |= bterm:n cterm:m … Bitwise OR of  the terms to the right
of the |=

16.2 AML Grammar Definition
This section defines the byte values that make up an AML byte stream.
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16.2.1 Names
LeadNameChar := ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ |

‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ |
‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ |
‘Y’ | ‘Z’ | ‘_’

NameChar := ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ |
‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ |
‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ |
‘Y’ | ‘Z’ | ‘_’ | ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ |
‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

‘_’ => 0x5F
‘A’-‘Z’ => 0x41 - 0x5A, inclusive
’0’-‘9’ => 0x30 - 0x39, inclusive

NameSeg := [LeadNameChar NameChar NameChar NameChar] |
[LeadNameChar NameChar NameChar ‘_’]  |
[LeadNameChar NameChar ‘_’ ‘_’]  |
[LeadNameChar ‘_’ ‘_’ ‘_’]
// ‘\_____’ refers to the ROOT, it is used
// mostly in Scope operators.

Name := NameTail | <RootPrefix NameTail> | <ParentNameHead NameTail>
RootPrefix => 0x5C // Single use per name – anchors the name

// to the root of the name space
NameTail := NameSeg  |

<MultiNamePrefix( segmentcount )  NameSeg segmentcount > |
<DualNamePrefix  NameSeg  NameSeg>

DualNamePrefix => 0x2E // Two name components follow –
// shorthand for MultiNamePrefix(2)

MultiNamePrefix := MultiNamePrefixOp ByteConst
MultiNamePrefixOp => 0x2F // N name components follow –

// N can be from 1 to 255, inclusive.
// For example:
// MultiNamePrefix(x23) => x2F x23
// and refers to a 35-character segment
// name (unreasonably long.)
// Note that
//   DualNamePrefix  NameSeg  NameSeg
// has a smaller encoding than the equivalent encoding
//   MultiNamePrefix(2) NameSeg NameSeg.

ParentNameHead := ParentNamePrefix [ParentNamePrefix ...]
ParentNamePrefix => 0x5E // 1 to N uses per name – anchors the name to a

// parent’s location in the name space tree.
SuperName := Name  |  DefArg  |  DefLocal | DefDebug

16.2.2 Declarations
DefConstant := OneOp | OnesOp | ZeroOp

OneOp => 0x01
OnesOp => 0xff | 0xffff | 0xffffffff
ZeroOp => 0x00

DefDataObject := DefBuffer | DefNum | DefPackage | DefString
DefBuffer := BufferOp ByteConst( buffsize ) ByteConst buffsize

   BufferOp => 0x11
DefNum := DefByte  |  DefWord  |  DefDWord
DefByte := ByteOp ByteConst
   ByteOp => 0x0A
   ByteConst => 0x00 - 0xff, inclusive
DefWord := WordOp WordConst

WordOp => 0x0B
WordConst => 0x0000 - 0xffff, inclusive

DefDWord := DWordOp DWordConst
DWordOp => 0x0C
DWordConst => 0x00000000 - 0xffffffff, inclusive

DefPackage := PackageOp  PkgLength(Length( Data )) ByteConst ElementCount  Data
PackageOp => 0x12
Length( expression ) => The length, in bytes, of expression.
PkgLength := PkgLead  ByteConst followcount

PkgLead  |= < 6-7: followcount => 1-3
        4-5: reserved

  0-3: 0-15
>
|
< 6-7: followcount => 0

  0-5: 0-63
>
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// Note: The high 2 bits of the first byte reveal how many
// follow bytes are in the PkgLength. If the PkgLength value
// is more than 1 byte long (value > 63) then only 4 bits
// are used from the first byte. Maximum value
// is 3*8 + 4 = 28 bits. The value is little endian.
// For example:
// PkgLength(63) => 0x3F
// PkgLength(64) => 0x40 0x04
// PkgLength(0xF13BA4) => 0xC4 0xBA 0x13 0x0F

DefString := StringOp  Asciib  NullChar
StringOp => 0x0D
Asciib := AsciiChar [AsciiChar ...]
AsciiChar => 0x01 - 0x7f // Any standard ASCII character

// except for NullChar).
NullChar => 0x00

DefDebug := DebugOp
DebugOp => 0x5B 0x31

DefMethodDataObject := DefArg | DefLocal
DefArg := Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6

Arg0 => 0x68
Arg1 => 0x69
Arg2 => 0x6A
Arg3 => 0x6B
Arg4 => 0x6C
Arg5 => 0x6D
Arg6 => 0x6E

DefLocal := Local0 | Local1 | Local2 | Local3 | Local4 | Local5  Local6 | Local7
Local0 => 0x60
Local1 => 0x61
Local2 => 0x62
Local3 => 0x63
Local4 => 0x64
Local5 => 0x65
Local6 => 0x66
Local7 => 0x67

DefNameSpaceModifier := DefAlias | Defname | DefScope
DefAlias := AliasOp  Name  Name

AliasOp => 0x06
DefName := NameOp  Name  DataTerm

NameOp => 0x08
Data := DataTerm [DataTerm ...]
DataTerm := DataItem  | DefPackage
DataItem := DefBuffer | DefNum | DefString

DefScope := ScopeOp PkgLength Name  NamedObjectList
ScopeOp => 0x10

NamedObjectList := NamedObject [NamedObject ...]
NamedObject := DefBankField | DefDevice | DefEvent | DefField | DefIndexField
| DefMethod | DefMutex | DefPowerResource | DefProcessor |

DefRegion | DefThermalZone
DefBankField := DefBankFieldOp  Name Name BankVal FieldFlag DefFieldList

DefBankFieldOp => 0x5B 0x87
BankVal => DwordConst
FieldFlag |= 0-3: AccessType

4-4: LockRule
5-6: UpdateRule
7-7: Reserved

AccessType:4 := AnyAcc | ByteAcc | WordAcc | DWordAcc |
BlockAcc | SMBSendRecvAcc | SMBQuickAcc

AnyAcc => 0
ByteAcc => 1
WordAcc => 2
DWordAcc => 3
BlockAcc => 4
SMBSendRecvAcc => 5
SMBQuickAcc => 6

LockRule:1 := Lock | NoLock
NoLock => 0
Lock => 1

UpdateRule:2 := Preserve | WriteAsOnes | WriteAsZeros
Preserve => 0
WriteAsOnes => 1
WriteAsZeros => 2

DefFieldList := DefFieldElement | [DefFieldElement ... ]
DefFieldElement := NamedField | ReservedField | AccessField
NamedField := NameSeg  PkgLength
ReservedField := 0x00  PkgLength
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AccessField := 0x01  Pkglength
DefDevice := DeviceOp PkgLength Name NamedObjectList

DeviceOp => 0x5B 0x82
DefEvent := EventOp Name

EventOp => 0x5B 0x02
DefField := DefFieldOp  PkgLength  Name  FieldFlag  DefFieldList

DefFieldOp => 0x5B 0x81
DefIndexField := IndexFieldOp Name Name FieldFlag FieldList

IndexFieldOp => 0x5B 0x86
DefMethod := MethodOp  PkgLength  Name  MethodFlags  CodeList

MethodOp => 0x14
MethodFlags |= 0-2: ArgCount

3-3: Synchronized
4-7: reserved

ArgCount:3 := 0-7
DefMutex := MutexOp  Name  SyncFlags

MutexOp 0x5B 0x01
SyncFlags |= 0-3: SyncLevel => 0x0 - 0xf

4-7: Reserved
DefPowerResource := PowerResOp PkgLength Name SysLevel Level NamedObjectList

PowerResOp => 0x5B 0x84
SysLevel := ByteConst
Level := WordConst

DefProcessor := ProcessorOp PkgLength Name ProcID PBlk PBlkLen NamedObjectList
ProcessorOp => 0x5B 0x83
ProcID := ByteConst
PBlk := DWordConst
PBlkLen := ByteConst

DefRegion := RegionOp Name RegionSpace RegionAddress RegionLength
RegionOp => 0x5B 0x80
RegionSpace := Byte => 0 | // SystemMemory

1 | // SystemIO
2 | // PCIConfig
3 | // EmbeddedControl
4 // SMBus

RegionAddress := DWordConst
RegionLength := DWordConst

DefThermalZone := ThermalZoneOp  PkgLength  Name NamedObjectList
ThermalZoneOp => 0x5B 0x85

16.2.3 Operators
OpCode := DefType2OpCode | SuperName | DefConstant | DefNum | DefString

Source := OpCode
Source1 := OpCode
Source2 := OpCode
Count := OpCode
BitNum := SuperName
Result := SuperName
Destination := SuperName
Index := OpCode

DefType1OpCode := DefBreak | DefBreakPoint | DefBitField | DefByteField |
DefDwordField | DefCreateField | DefWordField | DefElse |
DefFatal | DefIf | DefNoop | DefNotify | DefRelease |
DefReset | DefReturn | DefSignal | DefSleep | DefStall |
DefUnload | DefWhile

DefBreak := BreakOp
BreakOp => 0xA5

DefBreakPoint := BreakPointOp
BreakPointOp => 0xCC

DefBitField := BitFieldOp Source Index Destination
BitFieldOp => 0x8D

DefByteField := ByteFieldOp Source Index Destination
ByteFieldOp => 0x8C

DefDwordField := DwordFieldOp Source Index Destination
DwordFieldOp => 0x8A

DefCreateField := FieldOp Source Offset NoBits Destination
FieldOp => 0x5B 0x13
Offset := Opcode
NoBits := Opcode

DefWordField := WordFieldOp Source Index Destination
WordFieldOp => 0x8B
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DefElse := ElseOp PkgLength FalseCode
ElseOp => 0xA1
FalseCode := OpCode | CodePkg

DefFatal := FatalOp FType FCode FArg
FatalOp => 0x5B 0x32
FType := ByteConst
FCode := DwordConst
FArg := OpCode

DefIf := IfOp PkgLength Predicate TrueCode
IfOp => 0xA0
Predicate := OpCode
TrueCode := OpCode | CodePkg

DefNoOp := NoOp
NoOp => 0xA3

DefNotify := NotifyOp SuperName ByteConst
NotifyOp => 0x86

DefRelease := ReleaseOp SuperName
ReleaseOp => 0x5B 0x27

DefReset := ResetOp SuperName
ResetOp => 0x5B 0x26

DefReturn := ReturnOp ReturnValue
ReturnOp => 0xA4
ReturnValue := Opcode

DefSignal := SignalOp SuperName
SignalOp => 0x5B 0x24

DefSleep := SleepOp Milliseconds
SleepOp => 0x5B 0x22
Milliseconds := WordConst

DefStall := StallOp Microseconds
StallOp => 0x5B 0x21
Microseconds := ByteConst

DefUnLoad := UnLoadOp OpCode
UnloadOp => 0x5B 0x2A

DefWhile := WhileOp PkgLength Predicate TrueCode
WhileOp => 0xA2

Type2OpCode := DefAcquire | DefAdd | DefBitAnd |
DefBitNand | DefBitOr | DefBitNor | DefBitNot |
DefBitXor | DefConcat | DefCondRefOf | DefDecrement |
DefDivide | DefFindSetLeftBit |
DefFindSetRightBit | DefFromBCD | DefIncrement | DefLAnd |
DefLEqual | DefLGreaterEqual | DefLGreater |
DefLLessEqual | DefLLess | DefLNot | DefLNotEqual |
DefLoad | DefLOr |
DefMultiply | DefRefIndex | DefRefOf | DefRefMatch |
DefReturn | DefShiftLeftBit | DefShiftLeft
DefShiftRightBit | DefShiftRight | DefSizeOf | DefStore |
DefSubtract | DefToBCD | DefType | DefWait

DefAcquire := AcquireOp SuperName
AcquireOp => 0x5B 0x23

DefAdd := AddOp Addend1 Addend2 Result
AddOp => 0x72
Addend1 := OpCode
Addend2 := OpCode

DefBitAnd := AndOp Source1 Source2 Result
AndOp => 0x7B

DefBitNAnd := NAndOp Source1 Source2 Result
NAndOp => 0x7C

DefBitOr := OrOp Source1 Source2 Result
OrOp => 0x7D

DefBitNor := NorOp Source1 Source2 Result
NorOp => 0x7E

DefBitNot := NotOp Source1 Result
NotOp => 0x80

DefBitXor := XOrOp Source1 Source2 Result
XorOp => 0x7F

DefConcat := ConcatOp Source1 Source2 Destination
ConcatOp => 0x73

DefCondRefOf := CondRefOfOp Source Destination
CondRefOfOp => 0x5B 0x12

DefDecrement := DecrementOp SuperName
DecrementOp => 0x76

DefDivide := DivideOp Dividend Divisor Remainder Quotient
DivideOp => 0x78
Dividend := Opcode
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Divisor := Opcode
Remainder := SuperName
Quotient := SuperName

DefFindSetLeftBit := FindSetLeftBitOp Source Destination
FindSetLeftBitOp => 0x81

DefFindSetRightBit := FindSetRightBitOp Source Destination
FindSetRightBitOp => 0x82

DefFromBCD := FromBCDOp BcdValue Destination
FromBCDOp => 0x5B 0x28
BcdValue := OpCode

DefIncrement := IncrementOp SuperName
IncrementOp => 0x75

DefLAnd := LAndOp Source1 Source2
LAndOp => 0x90

DefLEqual := LEQOp Source1 Source2
LEQOp => 0x93

DefLGreaterEqual := LGEQOp Source1 Source2
LGEQOp => 0x95 0x92

DefLGreater := LGOp Source1 Source2
LGOp => 0x94

DefLLessEqual := LLEQOp Source1 Source2
LLEQOp => 0x94 0x92

DefLLess := LLOp Source1 Source2
LLOp => 0x95

DefLNot := LNotOp Source1
LNotOp => 0x92

DefLNotEqual := LNotEQOp Source1 Source2
LNotEQOp => 0x93 0x92

DefLoad := LoadOp Name
LoadOp => 0x5B 0x20

DefLOr := LOrOp Source1 Source2
LOrOp => 0x91

DefMultiply := MultiplyOp Multiplican Multiplier Product
MultiplyOp => 0x77
Multiplican := Opcode
Multiplier := Opcode
Product := SuperName

DefRefIndex := RefIndexOp OpCode OpCode
   RefIndexOp => 0x88
DefRefOf := RefOfOp Source

RefOfOp => 0x71
DefRefMatch := RefMatchOp Source MatchOp Source1 MatchOp Source2 Start

RefMatchOp => 0x89
MatchOp => OpCode
Start => OpCode

DefShiftLeftBit : = ShiftLeftBitOp Source BitNum
ShiftLeftBitOp => 0x5B 0x11

DefShiftLeft := ShiftLeftOp Source Count Result
ShiftLeftOp => 0x79

DefShiftRightBit := ShiftRightBitOp Source BitNum
ShiftRightBitOp => 0x5B 0x10

DefShiftRight : = ShiftRightOp Source Count Result
ShiftRightOp => 0x7A

DefSizeOf := SizeOfOp SuperName
SizeOfOp => 0x87

DefStore := StoreOp Source Destination
StoreOp => 0x70

DefSubtract := SubtractOp  Minuend Subtraend Difference
SubtractOp => 0x74
Minuend := OpCode
Subtraend := OpCode
Difference := SuperName

DefToBCD := ToBCDOp Value Destination
ToBCDOp => 0x5B 0x29
Value := OpCode

DefType := TypeOp SuperName
TypeOp => 0x8E

DefWait := WaitOp SuperName WordConst
WaitOp => 0x5B 0x25

16.3 AML Byte Stream Byte Values
The following table lists all the byte values that can be found in an AML byte stream and the meaning of
each byte value. This table is useful for debugging AML code.
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Table 16-2  AML Byte Stream Byte Values

Byte Value
(in Hex)

Meaning Fixed List Arguments Variable List
Arguments?

0x00 ZeroOp Nothing No

0x01 OneOp Nothing No

0x02 - 0x05 Null -- --

0x06 AliasOp Name  Name No

0x07 Null -- --

0x08 NameOp Name  Data No

0x09 Null -- --

0x0A ByteOp ByteConst No

0x0B WordOp WordConst No

0x0C DWordOp DWordConst No

0x0D StringOp AsciiChar [AsciiChar ...] NullChar No

0x0E - 0F Null -- --

0x10 ScopeOp Name Yes

0x11 BufferOp ByteConst Yes

0x12 PackageOp ByteConst Yes

0x13 Null -- --

0x14 MethodOp Name Byte Yes

0x15 - 0x2D Null -- --

0x2E (‘.’) DualNamePrefix NameSeg NameSeg --

0x2F (‘/’) MultiNamePrefix Byte NameSeg [NameSeg ...] No

0x30 - 0x5a Null -- --

0x5B (‘[‘) ExtendedOperator
Prefix

Byte --

0x5B 0x01 MutexOp Name Byte No

0x5B 0x02 EventOp Name No

0x5B 0x10 ShiftRightBitOp OpCode SuperName No

0x5B 0x11 ShiftLeftBitOp OpCode SuperName No

0x5B 0x12 CondRefOfOp OpCode SuperName No

0x5B 0x13 CreateFieldOp OpCode OpCode OpCode SuperName No

0x5B 0x20 LoadOp Name No

0x5B 0x21 StallOp OpCode No

0x5B 0x22 SleepOp OpCode No

0x5B 0x23 AcquireOp SuperName No

0x5B 0x24 SignalOp SuperName No

0x5B 0x25 WaitOp SuperName WordConst No

0x5B 0x26 ResetOp SuperName No

0x5B 0x27 ReleaseOp SuperName No

0x5B 0x28 FromBCDOp OpCode SuperName No

0x5B 0x29 ToBCD OpCode SuperName No

0x5B 0x2A UnloadOp OpCode No
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Byte Value
(in Hex)

Meaning Fixed List Arguments Variable List
Arguments?

0x5B 0x31 DebugOp Nothing No

0x5B 0x32 FatalOp Nothing No

0x5B 0x80 OpRegionOp Name Byte OpCode OpCode No

0x5B 0x81 FieldOp Name Byte Yes

0x5B 0x82 DeviceOp Name Yes

0x5B 0x83 ProcessorOp Name Byte Dword Byte Yes

0x5B 0x84 PowerResOp Name Name Word Yes

0x5B 0x85 ThermalZoneOp Name Yes

0x5B 0x86 IndexFieldOp Name Name Byte Yes

0x5B 0x87 BankFieldOp Name Name Dword Byte Yes

0x5C (‘\’) RootNamePrefix Name --

0x5D Null -- --

0x5E (‘^’) ParentNamePrefix Name --

0x5F Null -- --

0x60 (‘`’) Local0 Nothing No

0x61 (‘a’) Local1 Nothing No

0x62 (‘b’) Local2 Nothing No

0x63 (‘c’) Local3 Nothing No

0x64 (‘d’) Local4 Nothing No

0x65 (‘e’) Local5 Nothing No

0x66 (‘f’) Local6 Nothing No

0x67 (‘g’) Local7 Nothing No

0x68 (‘h’) Arg0 Nothing No

0x69 (‘i’) Arg1 Nothing No

0x6A (‘j’) Arg2 Nothing No

0x6B (‘k’) Arg3 Nothing No

0x6C (‘l’) Arg4 Nothing No

0x6D (‘m’) Arg5 Nothing No

0x6E (‘n’) Arg6 Nothing No

0x6F Null -- --

0x70 StoreOp OpCode SuperName No

0x71 RefOfOp SuperName No

0x72 AddOp OpCode OpCode SuperName No

0x73 ConcatOp OpCode OpCode SuperName No

0x74 SubtractOp OpCode OpCode SuperName No

0x75 IncrementOp SuperName No

0x76 DecrementOp SuperName No

0x77 MultiplyOp OpCode OpCode SuperName No

0x78 DivideOp OpCode OpCode SuperName SuperName No

0x79 ShiftLeftOp OpCode OpCode SuperName No

0x7A ShiftRightOp OpCode OpCode SuperName No

0x7B AndOp OpCode OpCode SuperName No
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Byte Value
(in Hex)

Meaning Fixed List Arguments Variable List
Arguments?

0x7C NAndOp OpCode OpCode SuperName No

0x7D OrOp OpCode OpCode SuperName No

0x7E NOrOp OpCode OpCode SuperName No

0x7F XOrOp OpCode OpCode SuperName No

0x80 NotOp OpCode SuperName No

0x81 FindSetLeftBitOp OpCode SuperName No

0x82 FindSetRightBitOp OpCode SuperName No

0x83 - 0x85 Null -- --

0x86 NotifyOp SuperName ByteConst No

0x87 SizeOfOp Name No

0x88 IndexOp OpCode OpCode No

0x89 MatchOp OpCode OpCode OpCode OpCode OpCode No

0x8A DWordFieldOp OpCode OpCode SuperName No

0x8B WordFieldOp OpCode OpCode SuperName No

0x8C ByteFieldOp OpCode OpCode SuperName No

0x8D BitFieldOp OpCode OpCode SuperName No

0x8E ObjTypeOp Name No

0x8F Null -- --

0x90 LAndOp OpCode OpCode No

0x91 LOrOp OpCode OpCode No

0x92 LNotOp OpCode No

0x93 LEQOp OpCode OpCode No

0x93 0x92 LNotEQOp OpCode OpCode No

0x94 LGOp OpCode OpCode No

0x94 0x92 LLEQOp OpCode OpCode No

0x95 LLOp OpCode OpCode No

0x95 0x92 LGEQOp OpCode OpCode No

0x96 - 9F Null -- --

0xA0 IfOp OpCode Yes

0xA1 ElseOp Nothing Yes

0xA2 WhileOp OpCode Yes

0xA3 NoOp Nothing No

0xA4 ReturnOp OpCode No

0xA5 BreakOp Nothing No

0xA6 - 0xCB Null -- --

0xCC BreakPointOp Nothing No

0xCD - 0xFE Null -- --

0xFF OnesOp Nothing No



Advanced Configuration and Power Management Interface Specification 16-260

Intel/Microsoft/Toshiba

16.4 Examples

16.4.1 Relationship Between ASL, AML, and Byte Streams
For an example that shows the relationship between ASL code and the AML byte stream it produces, see
sections 5.4  and 5.5.

16.5 AML Encoding of Names in the Name Space
Assume the following name space exists:

\
S0

MEM
SET
GET

S1
MEM

SET
GET

CPU
SET
GET

Assume further that a definition block is loaded that creates a node \S0.CPU.SET, and loads a block using it
as a root. Assume the loaded block contains the following names:

STP1
^GET
^^PCI0
^^PCI0.SBS
\S2
\S2.ISA.COM1
^^^S3
^^^S2.MEM
^^^S2.MEM.SET
Scope(\S0.MEM.SET.STP1) {

XYZ
^ABC
^ABC.DEF

}

This will be encoded in AML as:
'STP1'
ParentNamePrefix  'GET_'
ParentNamePrefix  ParentNamePrefix  'PCI0'
ParentNamePrefix  ParentNamePrefix  DualNamePrefix  'PCI0' 'SBS_'
RootPrefix  'S2__'
RootPrefix  MultiNamePrefix  3  'S2__'  'ISA_'  'COM1'
ParentNamePrefix  ParentNamePrefix  ParentNamePrefix  'S3__'
ParentNamePrefix  ParentNamePrefix  ParentNamePrefix  DualNamePrefix  'S2__'  'MEM_'
ParentNamePrefix  ParentNamePrefix  ParentNamePrefix  MultiNamePrefix3  'S2__'  'MEM_'
'SET_'

After the block is loaded, the name space will look like this (names added to the name space by the loading
operation are shown in italics).
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\
S0

MEM
SET
GET

CPU
SET

STP1
XYZ

ABC
DEF

GET
PCI0

SBS
S1

MEM
SET
GET

CPU
SET
GET

S2
ISA

COM1
MEM

SET
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